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Abstract— This paper studies the problem of ver-
tical powered landing through a non-negligible den-
sity atmosphere. Several constraints are considered,
one of them prevents hovering flight. The findings
of the paper extend the results from the literature
on atmosphere-free problems. The main contribution
establishes the nature of the fuel-optimal control se-
quence. Sufficient and necessary conditions are pro-
vided that guarantee the Min-Max nature of the nor-
mal extremals. Abnormal extremals are also shown to
be either Min or Max.

I. INTRODUCTION

Powered landing is a critical problem for reusable
launchers and planetary exploration. In these contexts,
minimizing the fuel consumption is a very natural and
desirable objective, which can be directly transcripted
as a free-final-time optimal control problem under con-
straints. Such problems, for which abundant literature
is available, have been formulated very early in the
development of space exploration programs.

Historically, Meditch [1] and then Shi & Eckstein [2]
have offered analytic solutions for the (atmosphere-free)
vertical Moon landing problem. Since then, due to the
spectacular development of reusable launcher technolo-
gies, powered landing strategies have been successfully
addressed using numerical methods [3]–[8]. Due to the
non-negligible effects of the atmosphere, the analytical
results derived for the Moon landing problem can not be
directly adapted to the problem of Earth landing. Yet,
analytical results on this problem would still represent
valuable assets. On the one hand, analytic solutions
are very useful to assess the quality of the numerical
methods, by providing well-described reference solutions
to standardized problems, see e.g. [9]–[13]. Further, when
analytical investigations establish the switching struc-
ture of the solution, very efficient numerical methods
can be employed, using a reduced number of unknown
variables [11], [12], [14]. For complex dynamics and high-
dimensional systems, obtaining such analytical results
is usually considered as out-of-reach [15]. It is thus of
importance to select only dominant factors while leav-
ing out unnecessary details in the modeling. Following
this modus operandi, we consider a simplified (but not
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simplistic) representation of the general powered landing
problem and establish a non-trivial result.

This paper considers one key element: the effects of
atmosphere. The model under study builds upon the
variable-mass model of a spacecraft (here referred to as
a rocket) considered in [1] and incorporates atmospheric
effects in the form of an altitude-dependent bias of the
thrust. In this model of the final phase of the powered
landing, the thrust generator is always turned on and the
thrust is upper and lower-bounded in a way that prevents
hovering flight.

Intuitively, one could expect that it is more efficient
to wait until the last feasible moment to use maximal
thrust, as early efforts trying to slow down the rocket
are likely to be less effective due to the varying mass
scaling of the dynamics. The contribution of this paper is
to establish conditions under which fuel-optimal vertical
powered landing through the atmosphere is indeed of this
expected Min-Max nature.

The arguments of proof are as follows. Under simple
assumptions on the atmosphere pressure model (de-
crease, convexity), the optimal thrust program is first
shown to have a max-min-max structure, based on
the Pontryagin’s Maximum Principle (PMP). Compared
to [1], some sharper differential inequalities on the ad-
joint states are necessary to conclude. Also, both nor-
mal and abnormal extremals need to be tackled. Then,
using additional inequality constraints derived from the
Implicit Function Theorem (IFT), min-max structures
are proven to be more fuel-optimal than max-min-max
structures. These conditions can be checked numerically,
over a finite domain. It is also shown that these condi-
tions hold for zero atmosphere (and scarce atmosphere,
using a continuity argument), which makes a connection
with [1].

The paper is organized as follows. In Section II, the
dynamics and the powered landing problem are pre-
sented. In Section III, the flight envelope is described
based on flow analysis and differential inequalities. In
Section IV, the optimal thrust program is shown to be
min-max using the PMP and the IFT. Finally, we provide
numerical details in Section V, and concluding remarks
in Section VI.

II. PROBLEM STATEMENT
A. A Rocket Model

The rocket is modeled as an axially symmetrical rigid
body, moving vertically, with altitude h, speed v and
total mass m, subjected to its weight in a constant
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gravity field g, and its engine thrust T . The dynamics
write ḣ = v, v̇ = −g + T (h,Q)

m , ṁ = −Q where Q
is the engine flow. Negative speed conveys descending
movement. The thrust is defined as follows

T (h,Q) = g Isp Q− S P (h) (1)

where Isp is the engine specific impulse, S is the rocket
section area and P is the atmospheric pressure. During
the powered landing, the rocket engine is always firing
and Q satisfies

0 < Q ≤ Q ≤ Q (2)

LANDING SITE

𝑇

𝑚𝑔

Rocket
Body

Air    Flow

Fig. 1. Powered de-
scent for vertical land-
ing.

The thrust model used in (1) con-
veys the net contribution of the
actual thrust, taking into account
the aerodynamic effects via an
altitude dependent bias. Because
the engine is firing, as pictured
in Figure 1, the sole effect of the
atmosphere is through the atmo-
spheric pressure in (1). This is
a valid approximation when the
movement is vertical, but would
not be directly applicable for pla-
nar or 3D movements as the aero-
dynamic drag model and its in-
teraction with the engine thrust
could be more complex in the
wake of the thrust flame.

In the problem setup under
consideration, the constraints (2)
are s.t. the net thrust is always
positive, i.e. Q is s.t.

g Isp Q− Smax
h≥0

P (h) > 0. (3)

Normalized dynamics: The following normalized
variables are introduced

u , 2Q−Q
Q−Q

− 1, u ∈ [−1, 1],

y1 , h
g Isp

, y2 , v
g Isp

, y3 , 2m
Q−Q

, y , (y1, y2, y3)>,

κ , 1
Isp
, r ,

Q+Q
Q−Q

, π(y1) , P (g Isp y1) 2S
g Isp (Q−Q)

.

This yields the control-affine dynamics in R3

ẏ = f(y) + ug(y), (4)

(Altitude) ẏ1 = y2 (5)

(Speed) ẏ2 = r + u− π(y1)
y3

− κ (6)

(Mass) ẏ3 = − (r + u). (7)

B. Specificities
The system under study in this paper is described by

the two following assumptions. Assumption 1: (Pressure
model properties) The normalized pressure function π, is
of class C2, and π > 0, π′ < 0, π′′ > 0.
This assumption is very general and holds for all refer-
ence Earth atmosphere models, such as [16].

The fuel tank being finite, there are two positive
bounds y3 and ȳ3 s.t. y3 ≤ y3 ≤ ȳ3.

The engine flow is bounded s.t. in the least favor-
able mass and altitude scenario, the net thrust strictly
compensates the gravity. Denote acc , r−1−π(0)

y+
3

− κ.
For any altitude, any speed, and any mass lower than
ȳ3, a positive acceleration is assumed, as stated below.
Assumption 2: (Thrust dominance) ẏ2 ≥ acc > 0.
Assumption 2 implies condition (3), shows that r > 1
and prevents hovering. Reaching null speed at a positive
altitude is thus an undesired behavior and is not a steady
state.
C. Optimal Control Problems

A natural goal sought for rocket landing is to maximize
the final mass [1], or equivalently to minimize the fuel
consumption, as it is a critical variable to deal with
uncertainties during the flight. Landing is defined as
final null altitude and (vertical) velocity. A constrained
optimal control problem in free final time depending on
an initial state y0 can then be formulated.

Problem 1: (Fuel optimal landing with state inequality
path constraints)

min
u(.), tf

∫ tf

0
r + u(s)ds

s.t. ẏ = f(y) + ug(y), |u| ≤ 1,
y(0) = y0, y1(tf ) = y2(tf ) = 0,
y1(t) ≥ 0, y2(t) ≤ 0, y3(t) ∈ [y3, ȳ3] (8)

State constraints (8) are meant for any t in [0, tf ].
Additionally, we will consider another formulation where
the state constraints (8) have been removed, as they will
be shown to be automatically satisfied.

Problem 2: (Fuel optimal landing)

min
u(.), tf

∫ tf

0
r + u(s)ds

s.t. ẏ = f(y) + ug(y), |u| ≤ 1,
y(0) = y0, y1(tf ) = y2(tf ) = 0

Studying Problem 2 will help us describe the solutions
of Problem 1.
D. Notations

The sign function is Sgn (a) = +1 if a > 0, Sgn (a) =
−1 if a < 0 and Sgn (0) = 0. For F : X ⊂ Rn → Rn
a smooth vector field, its flow is denoted by φF : R+ ×
Rn → Rn. Maximal solutions of an ordinary differen-
tial equation are solutions that cannot be extended in
time. Comparisons between vectors must be understood
element-wise.
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III. Premilinaries on the dynamics

This section aims at describing conditions under which
state path inequalities (8) can be ignored. A detailed
study of the dynamics is conducted. First, the altitude
and speed dynamics are studied using surfaces of R3

s.t. any trajectory that lands must start between these
surfaces. This region is called the flight envelop. Then,
the mass constraint is discussed.

Let us denote the domain D , R+×R−×(0, ȳ3]. Below,
we say that a trajectory starting at some y0 ∈ D lands
applying the thrust u(.) if it reaches y1(tf ) = y2(tf ) = 0
for some tf > 0. Note that the minimum mass constraint
is not included in this first part of the discussion.

Beforehand, remark that there is a unique time Tu
associated to a control u(.) s.t.

y0
3 −

∫ Tu

0
r + u(s)ds = 0. (9)

Since r + u ≥ r − 1 > 0, the map t → 1/y3(t) is not
integrable near Tu because of (7). Thus, the maximal
solution of (4) starting at y0 ∈ D is defined on the
interval [0, Tu). If u ≡ σ is constant, then Tσ = y0

3/(r+σ).
Lemma 1: Let σ ∈ [−1, 1] a constant parameter. For

any y0
2 and y0

3 , there is a unique y0
1(σ, y0

2 , y
0
3) s.t. a

trajectory starting at (y0
1(σ, y0

2 , y
0
3), y0

2 , y
0
3)> ∈ D lands

when applying the constant thrust u ≡ σ.
Proof: The maximal solution y of (4) with u ≡ σ,

starting at y0 ∈ D, is defined on [0, Tσ). y2(.) is contin-
uous, increasing and diverges to +∞ as t tends to Tσ.
Thus, there is a unique time, denoted t∗(y0

1) ∈ [0, Tσ)
s.t. y2(t∗(y0

1)) = 0. The IFT applied with Assumption 2,
on equation1

φf+σg
(
t∗(y0

1), (y0
1 , y

0
2 , y

0
3)>
)∣∣

2 = 0 (10)

shows that the application that maps y0
1 into t∗ is

actually continuous, and differentiable, for all y0
1 ≥ 0.

Then, define:

η : R+ 3 z 7→ φf+σg(t∗(z), (z, y0
2 , y

0
3)>)

∣∣
1 ∈ R. (11)

From the regularity of f + σg, the flow φf+σg is con-
tinuous and thus η is continuous. Necessarily, η(0) < 0.
Moreover, since the acceleration is lower-bounded by acc,
it is possible to find an altitude ycrit1 > 0 large enough s.t.
η(ycrit1 ) > 0. Therefore, there is a y∗1 ≥ 0 s.t. η (y∗1) = 0.
Using tf = t∗ (y∗1), one has y1(tf ) = y2(tf ) = 0 by con-
struction of η. A comparison argument, as in the proof
of Proposition 1, shows that η is actually increasing,
proving the uniqueness of y∗1 . It yields y∗1 = y0

1(σ, y0
2 , y

0
3)

using the above-mentioned variables.
Let us denote Σmax (respectively Σmin) the set of ini-
tial conditions s.t. landing is successful, at mass yf3 ∈
(0, ȳ3], when applying a constant maximum (resp. min-
imum) thrust. Denoting ymax

1 (y2, y3) , y0
1(1, y2, y3) and

1Here ?|i denotes the ith component of ?.

ymin
1 (y2, y3) , y0

1(−1, y2, y3), it yields

Σmax , {(ymax
1 (y2, y3), y2, y3) : y2 ≤ 0, y3 ∈ (0, ȳ3]},

Σmin , {(ymin
1 (y2, y3), y2, y3) : y2 ≤ 0, y3 ∈ (0, ȳ3]}.

Moreover, using flows of the backward-time dynamics,
for σ ∈ [−1, 1], define

Σσ ,
{
φ−(f+σg)

(
t, (0, 0, yf3 )>

)
: 0 ≤ t ≤ ȳ3 − yf3

r + σ
,

0 < yf3 ≤ ȳ3

}
which provides the relations Σmax = Σ1 and Σmin =
Σ−1. It is noteworthy that ymax

1 (y2, y3) ≤ ymin
1 (y2, y3),

implying that Σmax is always “below” Σmin, as pictured
in Figure 3.

Note that the applications ymin
1 and ymax

1 are continu-
ous: this property comes from the continuity of the flows
and the formal definition of Σσ. Continuity can also be
proven using the IFT on function η from equation (11),
considering y0

2 and y0
3 as variables.

Proposition 1: For any y0 ∈ D, if ymin
1 (y0

2 , y
0
3) < y0

1
then for any control u(.) in [−1, 1] the dynamics reaches
null speed at a positive altitude.

Proof: Consider y0 ∈ D s.t. ymin
1 (y0

2 , y
0
3) < y0

1
and denote ỹ0 , (ymin

1 (y0
2 , y

0
3), y0

2 , y
0
3)>. Let ỹ be the

maximal solution of (4) with u ≡ 1 and y be the maximal
solution of (4) for some measurable function u satisfying
|u| ≤ 1 at all times. y starts at y0 and ỹ at ỹ0. They are
respectively defined on [0, T1) and [0, Tu), where Tu ≤ T1.
Using mass as a time-varying scaling, we get(

ẏ1(t)
ẏ2(t)

)
≥ K

(
t,

(
y1(t)
y2(t)

))
,

(
y2(t)

−κ+ r−1−π(y1(t))
y0

3−t(r−1)

)
for any t ∈ [0, Tu). By construction, ỹ satisfies the equal-
ity version of this equation. Thus, comparison Lemma 5
(in Section VII) yields

ỹ1(t) ≤ y1(t), ỹ2(t) ≤ y2(t), ∀t ∈ [0, Tu).

Since y2 is continuous, increasing and diverges as t→ Tu,
there is a unique t∗ ∈ [0, Tu) s.t. y2(t∗) = 0. Therefore,
y1(t∗) ≥ ỹ1(t∗) ≥ 0. Using a Taylor expansion on (5)
with the initial conditions shows that the last inequality
is strict, whence the proposition.
Using a very similar proof, one shows the following result.

Proposition 2: For any y0 ∈ D, if ymax
1 (y0

2 , y
0
3) > y0

1
then for any control u(.) in [−1, 1] the dynamics reaches
null altitude at a negative speed.
Proposition 1 defines the notion of being too high, mean-
ing that if the rocket starts its powered descent above
Σmin (in terms of altitude), then it will either lack fuel
before reaching null speed, or go back up before touching
the ground and then lack fuel at a non-zero altitude.
In both cases, landing fails. Proposition 2 is the exact
equivalent for the notion of being too low, meaning that
the rocket will hit the ground at a non-zero speed if it
starts below Σmax.
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Further, note that if a trajectory lands, s.t. the
mass remains in [y3, ȳ3], then the acceleration is upper
bounded by ācc , −κ+ r+1

y
3

for any positive time. Since
the fuel flow is lower-bounded, the mass can remain in
[y3, ȳ3] for at most Tmax ,

ȳ3−y3
r−1 Therefore, for any

positive time, the speeds are lower-bounded by y2 and
the altitudes are upper-bounded by ȳ1 s.t.

y2 , −āccTmax and ȳ1 , ācc
T 2

max
2 . (12)

Let us define by F ⊂ D the flight envelop, as the set
of states y lying between Σmax and Σmin (in terms of
altitude), and satisfying

y1 ≤ ȳ1, y2 ≥ y2, and y3 ≤ y3 ≤ ȳ3. (13)

Consequently, if y0 ∈ F and Problem 2 has a solution,
then altitude and speed constraints are enforced. If y0 ∈
D\F , then Problems 1 and 2 cannot have solutions.

Leaving out the limit cases of Σmax and Σmin, for
which landing can be achieved by applying respectively
the maximum and the minimum thrust, for the whole
duration of the flight, we introduce

F∗ , F\(Σmax ∪ Σmin). (14)

The following result discusses feasibility of the landing.
Optimality will be studied later on in Section IV.

Proposition 3: If y0 belongs to F∗, then there is always
a control u of structure min-max that lands.

Proof: The min-max structure denotes a 2 step
sequence starting with minimum value of the control
and ending with maximum value. For such y0, denote
ỹ0 , (ymin

1 (y0
2 , y

0
3), y0

2 , y
0
3) ∈ Σmin. Since y0 ∈ F∗, then

ymax
1 (y0

2 , y
0
3) < y0

1 < ymin
1 (y0

2 , y
0
3).

Let us denote y and ỹ the maximal solutions of equa-
tion (4) with u ≡ −1, starting respectively at y0 and
ỹ0. Then, using similar comparisons as in the previous
proof, y1(t) < ỹ1(t) and y2(t) < ỹ2(t) for all positive
times. Thus, one deduces that y1 reaches zero at some
time t′ > 0, before y2 does. Moreover, the map

ξ : t ∈ [0, t′]→ y1(t)− ymax
1 (y2(t), y3(t)) ∈ R (15)

is continuous, and satisfies ξ(0) > 0 since the trajec-
tory starts strictly above Σmax, and ξ(t′) < 0 since
(0, y2(t′), y3(t′)) is necessarily below Σmax in terms of
altitude (recall that y2(t′) < 0). Thus, there is a time
t′′ ≤ t′ s.t. y(t′′) ∈ Σmax. The desired min-max control
law equals −1 on [0, t′′) and +1 for times t ≥ t′′.
As far as the mass is concerned, since it is a continu-
ous decreasing function of time, enforcing the terminal
constraint y3(tf ) ≥ y3 is sufficient to guarantee mass
constraint (8).

Therefore, only the simplified Problem 2 needs to be
solved. If there is a solution that satisfy y3(tf ) ≥ y3,
then Problem 1 shares the same solution. Otherwise, if
y3(tf ) < y3, then Problem 1 has no solutions. Indeed,
since the solution is fuel-optimal, there is no other way
to land with a greater final mass.

IV. OPTIMAL THRUST PROGRAMS
This section focuses exclusively on Problem 2, which,

according to the previous discussion gives an answer to
Problem 1 or proves its infeasibility. We aim at proving
that optimal controls are of min-max nature, where one
of the Min or Max arcs may be absent. To establish
this result (Theorem 1), we proceed as follows. First,
stationary conditions are derived from the PMP. Then,
using properties of the second adjoint state variable,
the optimal thrust program is shown to be max-min-
max. Finally, the first maximum arc is shown to be
absent under one (mild) additional assumption on the
atmosphere model (Assumption 4).

A. Fuel Optimal Landing
Consider y0 ∈ F . Let u be an optimal thrust program

for Problem 2 and y be the corresponding trajectory.
Let tf be the time-of-flight. It is assumed that y3(tf ) ≥
y3. Thus, from the previous section, y lies in F .

The Hamiltonian of Problem 2 is defined as

H , λ0(r + u) + λ>(f(y) + ug(y)) (16)

where λ0 ∈ R and λ : [0, tf ] → R3 denote the adjoint
states. To study the control-affine Hamiltonian, consider
the switching function

Γ(t) , λ0 + λ(t)>g(y(t)) = λ0 + λ2(t)
y3(t) − λ3(t). (17)

The Pontryagin maximum principle (PMP), as stated
in [15, Thm. 2.2.1], yields

(λ0, λ(t)) 6= 0R4 , ∀t ∈ [0, tf ] (18)

λ̇1 =λ2
π′(y1)
y3

(19)

λ̇2 = − λ1 (20)

λ̇3 = λ2

y2
3

(r + u− π(y1)) (21)

u = − Sgn (Γ(t)) , when Γ(t) 6= 0 (22)

λ(tf ) =
(
ν1 ν2 0

)>
, (ν1, ν2) ∈ R2 (23)

Equation (18) states the non-triviality of the adjoint
states. Since the integral cost, the dynamics and the end-
point constraints are time-invariant, the Hamiltonian is
constant along the extremals and for such a free time,
fixed endpoint problem, this constant is zero [17], [18,
Thm. 7.8.1]

H(t) ≡ 0, ∀t ∈ [0, tf ]. (24)

The optimal pairs (y, u) are called abnormal ex-
tremals [19], [20] if λ0 = 0, and normal extremals if
λ0 6= 0. We now proceed to establish some intermediate
results on the adjoint states.

Proposition 4: (λ1(t), λ2(t)) 6= (0, 0) for all t ∈ [0, tf ].
Proof: The linear time-varying dynamics of (λ1, λ2)

is Lipschitz in (λ1, λ2) and continuous in time. Therefore,
from the Cauchy-Lipschitz theorem, any maximal solu-
tion is unique. Thus, if there is a t0 s.t. (λ1, λ2)(t0) = 0,
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𝜆2

ሶ𝜆2

(0, 0)

1a

1b1d

1c
2b

2a

3b

3a

Fig. 2. Possible scenarios for (λ2, λ̇2). The origin is prohibited due
to Proposition 4.

then λ2 ≡ 0 over [0, tf ], implying λ3 ≡ 0 from (21)
and (23) and then λ0 = 0 from (24), violating (18).
Now, remark that the sign of λ2 and λ̇2 can be extrapo-
lated from the following second-order equation

λ̈2 = a(t)λ2, where a(t) , −π
′(y1(t))
y3(t) > 0. (25)

Indeed, the cones R+ × R+ and R− × R− are invariant
through the dynamics (25). This shows that if λ2 or λ̇2
is null at some tλ ∈ (0, tf ), then they will both remain in
one of these cones after tλ. Further, from Proposition 4
and (25), they will actually remain in interior subsets of
these cones for times t > tλ. Hence, by an exhaustive
enumeration of possible cases we can state the following
result.

Proposition 5: (λ2, λ̇2) necessarily match one of these
conditions, as illustrated in Figure 2:

1) λ2 and λ̇2 are never zero on (0, tf ):
a) λ2 > 0 and λ̇2 > 0 on (0, tf ),
b) λ2 > 0 and λ̇2 < 0 on (0, tf ),
c) λ2 < 0 and λ̇2 > 0 on (0, tf ),
d) λ2 < 0 and λ̇2 < 0 on (0, tf ),

2) ∃!tλ ∈ (0, tf ) : λ2(tλ) = 0 and λ̇2 6= 0 on [0, tf ]:
a) Sgn (λ2(t)) = −Sgn (t− tλ) and λ̇2 < 0,
b) Sgn (λ2(t)) = Sgn (t− tλ) and λ̇2 > 0,

3) ∃!tλ ∈ (0, tf ) : λ̇2(tλ) = 0 and λ2 6= 0 on [0, tf ]:
a) Sgn

(
λ̇2(t)

)
= −Sgn (t− tλ) and λ2 < 0,

b) Sgn
(
λ̇2(t)

)
= Sgn (t− tλ) and λ2 > 0.

Note that for scenarios 1a and 1d (resp. scenarios 1b
and 1c), either λ2 or λ̇2 can be zero at t = 0 (resp. at
t = tf ). Also, note that for scenario 2, λ2 is necessarily
non-zero at t = 0 and t = tf since λ̇2 is of constant
sign. The same kind of remark applies to scenario 3 as
well. The goal is to state whether these scenarios are
consistent with conditions (18)-(23), and if so to what
control structure they refer to.

Proposition 6: Abnormal extremals are optimal pro-
grams of constant thrust.

Proof: For abnormal extremals, λ0 = 0. Using
equation (24) at t = tf yields ν2 = 0 = λ2(tf ). Thus,
from Proposition 5, λ2 has a constant non-zero sign
over [0, tf ). Moreover, from (21) and (23), one has

Sgn (λ3(t)) = −Sgn (λ2(t)) , ∀t ∈ [0, tf ). (26)

Therefore, for any t ∈ [0, tf ): Sgn(Γ(t)) = Sgn(λ2).
Hence, u has a constant value in {−1,+1} over [0, tf ).

This latest proposition shows that abnormal extremals
require the initial state y0 to be on constant thrust
trajectories achieving landing, i.e y0 ∈ Σmax or y0 ∈
Σmin must hold for these extremals.

From now on, we consider normal extremals only and
without loss of generality2, we consider λ0 = 1. Let us
define

b(t) , π(y1(t))
y3(t)

Note that from Assumption 1 and the sign of y2, one
can show that a(.) and b(.) are increasing from a study
of their derivatives. Also, for all times in [0, tf ], a and b
are respectively lower and upper-bounded by

a , −π
′(ȳ1)
ȳ3

and b̄ ,
π(0)
y3

. (27)

Let us define γ(t) , λ̇2(t) + λ2(t)b(t), which satisfies:
dΓ
dt

(t) = Γ′(t) = γ(t)
y3(t) (28)

Since y3 is positive, γ carries the sign of Γ′. From this
point, Γ is the subject of our investigations.

Lemma 2: If γ < 0 over (0, tf ), then Γ is null at most
on a singular t ∈ [0, tf ].

Lemma 3: Γ < 0 in the neighborhood of tf .
Proof: Eq. (24) at tf yields ν2 = −(r+u(tf ))/ẏ2(tf ).

Thus, one gets Γ(tf ) = −κy3(tf )+π(0)
y3(tf )ẏ2(tf ) < 0. The conclu-

sion follows from the continuity of Γ(.).
λ2 must be non-positive in a neighborhood of tf . Indeed,
let us assume that there is a time t′ s.t. λ2 is positive
on [t′, tf ). Note that λ2(tf ) may be null. Then, using
(21) and (23), λ3 would necessarily be negative on [t′, tf ),
leading to Γ(t) > 0 for t in [t′, tf ], which contradicts
Lemma 3. It eliminates scenarios 1a, 1b, 2b and 3b.

Moreover, note that scenario 1d necessarily corre-
sponds to min-max programs, where one arc may be
absent, for it satisfies Lemma 2.

Then, the three remaining scenarios, namely 1c, 2a
and 3a, require a refined sign study of λ2 and λ̇2.
Using differential equations bounding λ2, we can estab-
lish bounds on γ tight enough to derive valuable sign
information.

Definition 1: For a constant c > 0 and t0 ∈ (0, tf ),
the C2 function: xc : [0, tf ] → R is defined as the
unique solution of the initial value problem ẍc = cxc
with xc(t0) = λ2(t0) and ẋc(t0) = λ̇2(t0), or

xc(t) = λ2(t0) cosh
√
c(t− t0) + λ̇2(t0)√

c
sinh
√
c(t− t0).

Inspired from the definition of γ above, let us denote

γc(t) , ẋc(t) + xc(t)b(t). (29)

and introduce zλ , (λ2, λ̇2)> and z , (xa, ẋa)> s.t.

żλ = F (t, zλ) ,
(

0 1
a(t) 0

)
zλ. (30)

2Equations being linear in λ, one can consider λ/λ0 instead of λ.
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The next proofs require the following assumption.
Assumption 3: The constants in (27) are s.t. b̄ < √a.
Proposition 7: For scenario 2a, γ(t) < 0,∀t ∈ [0, tf ].

Proof: Here, λ̇2 < 0 and Sgn (λ2(.)) = −Sgn (.− tλ),
where tλ ∈ (0, tf ). In this proof only, we consider the
functions from Definition 1 with t0 = tλ. It leads to

γa(t) = λ̇2(tλ)
(

cosh√a(t− tλ) + b(t)
√
a

sinh√a(t− tλ)
)

For any t > tλ, γa(t) < 0. Since a increases, scenario 2a
yield zλ(tλ) = za(tλ) and for any t ∈ [tλ, tf ]

żλ(t) = F (t, zλ(t)) and ża(t) ≤ F (t, za(t)). (31)

Comparison Lemma 5 yields zλ(t) ≤ za(t) on [tλ, tf ]. As
a consequence

γ(t) ≤ γa(t) < 0, ∀t ∈ [tλ, tf ]. (32)

For any t < tλ, γa(t) < 0 when Assumption 3 is satisfied.
The same reasoning applies, except that λ2(t) > 0 this
time, and that comparison Lemma 5 has to be applied
in backward-time. It shows that γ(t) ≤ γa(t) < 0 for any
t ∈ [0, tλ], whence the desired property.
Lemma 3 and Proposition 7 imply that the sign of Γ
changes at most once over [0, tf ] for scenario 2a.

Lemma 4: If λ2 < 0 over [0, tf ], if γ(tγ) = 0 for
some tγ ∈ (0, tf ) and if Assumption 3 holds, then:
γ(t) < 0, ∀t > tγ .

Proof: By construction λ2(tγ) = −λ̇2(tγ)/b(tγ).
Necessarily, λ̇2(tγ) > 0. In this proof only, we consider
the functions from Definition 1 with t0 = tγ . It yields

γa(t) = λ̇2(tγ)
[(

1− b(t)
b(tγ)

)
cosh√a(t− tγ) (33)

+ b(t)b(tγ)− a
b(tγ)√a sinh

√
c(t− tγ)

]
Since b increases, the factor associated to cosh is nega-
tive. Also, Assumption 3 yields

b(t)b(tγ)− a ≤ (b(t) +√a)(b(t)−√a) < 0 (34)

Thus, γa(t) < 0 for t > tγ . Moreover, zλ(tγ) = za(tγ)
holds and since λ2 < 0, for any t ∈ [tγ , tf ]:

żλ(t) = F (t, zλ(t)) and ża(t) ≤ F (t, za(t)), (35)

The conclusion stems from comparison Lemma 5.
Proposition 8: Under the assumptions of Lemma 4,

the sign of Γ changes at most twice on [0, tf ].
Proof: γ can be zero at most on an isolated point.

Indeed, γ is continuous and if there is t0 s.t. γ(t0) =
0, then, from Lemma 4, it cannot be zero for greater
times. Therefore, from (28), Γ can be zero at most on
two isolated points.
Proposition 8 shows that the two remaining scenarios
(1c and 3a) corresponds to max-min-max structures. It
enables us to state the main result of the subsection.

Proposition 9: Under Assumptions 1, 2 and 3, and for
y0 in F , any solution of Problem 2 is necessarily a max-
min-max thrust program, where one or two arcs may be
absent.

B. Optimality of Min-Max Programs
We shall now discuss under which conditions min-max

trajectories are always more fuel-optimal than max-min-
max trajectories, for some y0 ∈ F∗.

Let us consider a trajectory y starting at y0, with
thrust structure max-min-max. Denote t1 its first time
of switch (from max to min). The last max arc may be
of null duration. Then, for every time t′1 ∈ [0, t1], there
is a trajectory with thrust structure max-min-max, with
first time of switch t′1, that lands, which is guaranteed by
applying Proposition 3 at t′1. Below, we derive conditions
under which the trajectory having the smallest first time
of switch has the highest final mass, showing that the
min-max trajectory starting from y0 is fuel-optimal.

The second time of switch, denoted t2, and the final
time tf are implicitly imposed by t1 so that the rocket
lands. This relation will be given later. For the time
being, note that the final mass, denoted yf3 , satisfies

y0
3 − y

f
3 (t1) = (r + 1)t1 + (r − 1)(t2(t1)− t1)

+ (r + 1)(tf (t1)− t2(t1)) (36)

The first two components of y are collected in µ(y),
i.e. µ(y) , (y1, y2)>. The landing condition is simply:
µ(y(tf )) = 0. Define

L(τ1, τ2, τf ) ,
µ
(
φf+g(τf − τ2, φf−g(τ2 − τ1, φf+g(τ1, y0)))

)
.

Then, the landing condition boils down to

L(t1, t2, tf ) = 0. (37)

It describes the above-mentioned implicit dependence of
(t2, tf ) on t1. When applicable, the IFT used on (37)
provides us with the differentiability and the value of
the derivatives of t2 and tf with respect to t1, as(

dt2
dt1

,
dtf
dt1

)>
= −

[
∂L

∂[t2, tf ]

]−1
· ∂L
∂t1

(38)

To express these derivatives with respect to t1, interme-
diate quantities are introduced. The transition matrices
M(tf ) and N(t2) are respectively defined as the unique
solutions to the matrix initial value problems

Ṁ(t) = ∂(f + g)
∂y

(y(t)) ·M(t) and M(t2) = I3, (39)

Ṅ(t) = ∂(f − g)
∂y

(y(t)) ·N(t) and N(t1) = I3. (40)

Let us define R1, R2, S1 and S2 by(
R1 R2

)>
,µ (M(tf ) · (f − g)(y(t2))) (41)(

S1 S2
)>

,µ (M(tf ) ·N(t2) · (f + g)(y(t1))) (42)

Since Assumption 2 holds, the invertibility condition of
∂L

∂[t2,tf ] needed to apply the IFT boils down to R1 6= 0.
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Then, one can provide a detailed version of (38)

dt2
dt1

= 1− S1

R1
(43)

dtf
dt1

= 1− 1
ẏ2(tf )R1

(R1S2 −R2S1 + S1ẏ2(tf )) (44)

Using the previous terms with equation (36) yields

dyf3
dt1

(t1) = r + 1
ẏ2(tf )R1

[
R1(S2 − ẏ2(tf ))

+ S1

(
ẏ2(tf )r − 1

r + 1 −R2

)]
(45)

The conditions that enable us to state that min-max
thrust programs are always more fuel-optimal than the
max-min-max ones, by allowing us to apply the IFT on
L, is thus conveyed by the assumption

Assumption 4: The parameter defined in (41) is s.t.
R1 6= 0, and one has dyf

3
dt1

(0) < 0 for any y0 ∈ F∗ s.t. the
rocket lands at y3(tf ) ≥ y3.
Note that, since it is formulated for any y0 ∈ F∗, it is
sufficient to check these conditions for t1 = 0 only. More-
over, these conditions can be either checked through (45),
analytically - if the pressure model is known well enough
and tractable - or numerically.

For illustration purposes only, let us check the validity
of Assumption 4 when there is no atmosphere. When
π ≡ 0, every term from (43) and (44) can be explicitly
written using the fact that r+u

y3
= − ẏ3

y3
from intermediate

integrations, yielding

R1 = 2
r+1

(
1− y3(tf )

y3(t2) + log y3(tf )
y3(t2)

)
, R2 = −κ+ r−1

y3(tf )

S1 = − 2
r−1 log y3(t2)

y3(t1) , S2 = −κ+ r+1
y3(tf ) .

R1 is negative for y3(t2) > y3(tf ). Thus, (45) becomes

dyf3
dt1

(t1) = − 4κ
ẏ2(tf )(r − 1)

1
R1

log y3(t2)
y3(t1) < 0. (46)

The negativity of this quantity gives the desired conclu-
sion. By continuity, the assumption also holds for scarce
atmospheres. Further, an example based on a non-scarce
tabulated pressure model is treated in Section V.

C. Summary
Under Assumptions 1, 2, 3, and 4, if the final mass yf3

of the landing min-max trajectory, starting from a y0 in
F , satisfies yf3 ≥ y3, then the optimal thrust program of
Problem 1 is min-max, where one arc may be absent.

Conversely, if yf3 < y3 or if y0 /∈ F , then Problem 1
has no solution.

Henceforth, it is possible to describe the whole set of
feasible initial conditions. Define

Ω
(
yf3
)
,
{
φ−(f−g)

(
τ1, φ−(f+g)

(
τ2, (0, 0, yf3 )>

))
:

τ1 ≥ 0, τ2 ≥ 0,
(r − 1)τ1 + (r + 1)τ2 ≤ ȳ3 − yf3

}

Speed (y2)
y2 < 0

0
Mass (

y3)

y −
3

y +
3

Al
tit

ud
e 

(y
1)

0

y1 > 0

Σmax
Σmin
Ω(y −

3 )

Fig. 3. Fsol is delimited by Σmax, Σmin, Ω
(
y−3
)

and closed by
the constraint y3 ≤ y+

3 on the last side. For Σmax and Σmin, only
the trajectories that land with a mass y3(tf ) ≥ y3 are represented.
The vertical axis conveys the altitude to ease the visualization.

which denotes the set of states landing at final mass
yf3 ≤ ȳ3 applying a min-max control. Minimum (resp.
maximum) arcs last for τ1 (resp. τ2). Thus, the solution
set Fsol of the initial conditions y0 s.t. Problem 1 has a
solution is

Fsol ,
⋃

y
3
≤yf

3≤ȳ3

Ω
(
yf3
)

(47)

The main result of the paper summarizes this discussion.
Theorem 1: (Main result) Under Assumptions 1, 2, 3 and
4, Problem 1 has a solution if and only if y0 ∈ Fsol. When
y0 ∈ Fsol, the optimal thrust program is min-max, where
one arc may be absent.

Remark 1: Without Assumption 4, max-min-max pro-
grams (where one or two arcs may be absent) are optimal.

V. NUMERICAL RESULTS
Let us consider the following (normalized) parameters

κ = 0.00285 s−1, r = 4.0, y3 = 458.3 s, ȳ3 = 520.3 s.

In this example, the engine can be used at 60-100% of its
maximum flowrate. Also, κ is taken close to the values
of actual reusable launcher engines [21], such as the
Merlin (Falcon 9) or the BE-4 (New Glenn). We consider
a pressure model describing Earth’s atmosphere from
tabulated values, satisfying Assumption 1, s.t. π(0) =
6.2× 10−1. Assumption 2 and 3 are satisfied since

acc = 2.90× 10−3 > 0 and b̄/
√
a = 3.37× 10−1 < 1.

Fsol is pictured in Figure 3 for these values. Assump-
tion 4 is then checked numerically, by computing R1

and dyf
3

dt1
(0) on a high density mesh covering Fsol. The

evaluation of (45) only requires to integrate ODEs,
namely (4), (39) and (40), over fixed time intervals.
Thus, it is vastly beneficial to use (45) instead of finite
differences to check Assumption 4 in reasonable time.

To illustrate the optimality of the min-max structure,
let us consider an example where three trajectories start
from y0

1 = 1.25 s, y0
2 = -6.96 × 10−2 and y0

3 = 441.2 s,
as presented in Figure 4. The trajectory with the min-
max structure has the greatest final mass. The other
two trajectories have respectively a 2.2% and 5.7% lower

6318

Authorized licensed use limited to: ECOLE DES MINES PARIS. Downloaded on February 10,2022 at 09:24:16 UTC from IEEE Xplore.  Restrictions apply. 



Speed (y2)

y2 < 0

0
Mass (

y3)

y −
3

y +
3

Al
tit

ud
e 

(y
1)

0

y1 > 0

y0

Σmax
y when t 01 = 0.0s
y when t 01 = 3.5s
y when t 01 = 5.0s

Fig. 4. Three max-min-max trajectories, with varying first time
of switch t′1. Maximum final mass is obtained for t′1 = 0, ie for a
min-max thrust program.

final mass. Note that the associated time-of-flights tf are
respectively 25.6 s, 31.7 s and 41.1 s.

VI. CONCLUSION AND FUTURE WORKS

The theoretical results presented in this paper for-
mulate assumptions under which the fuel-optimal atmo-
spheric vertical powered landing has a very simple min-
max structure. These assumptions take the form of an
inequality that can be estimated numerically.

Some more subtle effects of the atmosphere could,
in principle, be accounted for under the form of more
advanced models. To improve representativeness, drag
effects in the wake of the thrust flame could be addi-
tionally modeled. In view of applications, the resulting
open-loop strategy has to be complemented by a closed-
loop strategy to cope with model uncertainties and
un-modeled disturbances. Another reason to develop a
closed-loop strategy is that, as many bang-bang laws,
the min-max solution is not robust. As-is, any actuator
delay would necessarily lead to a crash. One solution is
to use more conservative constraints

(
Q,Q

)
, and exploit

the remaining leeway with predictors, feedforward and
feedback actions. This will be the subject of our future
work.

VII. APPENDIX

A function F : I×X ⊂ R×Rn → Rn is said to be quasi-
monotone increasing if, for every pair (t, x) and (t, v) in
I ×X and every i = 1, . . . , n, one gets Fi(t, x) ≥ Fi(t, v)
whenever xi = vi and x ≥ v.

Lemma 5: (adapted from [22, IX.2.6]) Let F be
a continuously-differentiable, quasi-monotone increasing
function and x : [t0, τ) → Rn the maximal solution of
ẋ(t) = F (t, x(t)) through some point (t0, x0) ∈ I × X .
Assume v : [t0, τ ′) → Rn, τ ′ ≤ τ is a differentiable
function s.t. (t, v(t)) ∈ I × X and (i) v(t0) ≤ x0, (ii)
v̇(t) ≤ F (t, v(t)), ∀t ∈ (t0, τ ′). Then, v(t) ≤ x(t) for
any t in [t0, τ ′). If ≤ is replaced by ≥ in (i) and (ii), then
v(t) ≥ x(t) for any t in [t0, τ ′).
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[3] L. Blackmore, B. Açıkmeşe, and J. M. Carson, “Lossless
convexification of control constraints for a class of nonlinear
optimal control problems,” Systems & Control Letters, vol. 61,
pp. 863–870, Aug. 2012.

[4] M. Szmuk and B. Acikmese, “Successive Convexification for
6-DoF Mars Rocket Powered Landing with Free-Final-Time,”
in 2018 AIAA Guidance, Navigation, and Control Conference,
American Institute of Aeronautics and Astronautics, 2018.

[5] U. Lee and M. Mesbahi, “Constrained Autonomous Precision
Landing via Dual Quaternions and Model Predictive Control,”
Journal of Guidance, Control, and Dynamics, vol. 40, no. 2,
pp. 292–308, 2017.

[6] I. M. Ross and M. Karpenko, “A review of pseudospectral
optimal control: From theory to flight,” Annual Reviews in
Control, vol. 36, pp. 182–197, Dec. 2012.
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the atmospheric arc of a space shuttle and numerical simula-
tions with multiple-shooting method,” Mathematical Models
and Methods in Applied Sciences, vol. 15, pp. 109–140, Jan.
2005.

[11] C. D’Souza, “An optimal guidance law for planetary landing,”
in Guidance, Navigation, and Control Conference, p. 3709,
1997.

[12] T. P. Reynolds and M. Mesbahi, “Optimal Planar Powered
Descent with Independent Thrust and Torque,” Journal of
Guidance, Control, and Dynamics, vol. 43, pp. 1225–1231,
July 2020.

[13] K. Graichen and N. Petit, “Solving the Goddard problem with
thrust and dynamic pressure constraints using saturation func-
tions,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 14301–
14306, 2008.
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