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Abstract— This article proposes a methodology for estimating
the velocity (w.r.t the air) of a high-velocity flying shell from low-
cost embedded sensors. The novelty is to exploit aerodynamics
models in combination with a frequency detection approach,
through a state observer. Besides its main rotation (spin), the
shell has gyroscopic precession and nutation motions, which
are measured by inertial sensors as pseudo-periodic signals.
The instantaneous frequencies of these time-varying signals give
direct information on the aerodynamics of the shell, and in
particular, its velocity w.r.t the air. The frequency content of
the signal of the strapdown sensors is exploited by means of a
two-step approach consisting of frequency detection reconciled
with the aerodynamic models by an observer. A switching gain
is used to deal with the transition of the shell in the transonic
regime. A proof of convergence is given. Experimental results
are exposed.

I. INTRODUCTION

This article exposes a methodology for estimating the
velocity w.r.t the air of a high-velocity flying shell. The
problem under consideration belongs to the vast class of state
estimation problem for 6-degrees of freedom (DOF) rigid
bodies subjected to aerodynamics effects using embedded
sensors. As it is now very common with the advent of low-
cost sensors, such solid body can be equipped with strapdown
inertial sensors, which as is well known [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12] can be used to reliably
solve navigation problems, at the expense of reasonably
complex on-board calculations and off-line tasks such as
multi-sensor system calibration [13]. Numerous experiments
have been reported in the literature for Unmanned aerial
vehicles [14], [15], [16], Unmanned ground vehicles [17],
micro-satellites [18], [19], [20], sounding rockets [21], space-
crafts [22], [23], [24] among others.

However, in some applications, such as the artillery shells
which are the example we focus on in this study, several
constraints discard these classic techniques. Lately, this topic
has been of interest as significant performance improvements
are expected from “smart-shells” (compared to currently
employed ammunitions) which embed sensors for guidance
and navigation tasks [25], [26], [27]. The trajectory of a shell
is short due to its high speed, and can be subjected to a high
spinning rate [28], [29], [30]. The short duration of the flight
is unfavourable to GPS sensors, which usually work at low
measurement rates. On the other hand, the spin can saturate
most low-cost gyrometers1, if they are not damaged by the
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1typically, rotation rates of 300 Hz can be considered, which is out of
the scale of most low-cost gyrometers

high impact caused by the gunshot. These facts make the
navigation problem a difficult one.

In this article, we propose an unusual method to solve
one central question in navigation of shells: the estimation
of its velocity w.r.t. the air, as already considered in [31],
[32], [33]. The novel method we propose takes advantage of
the oscillations the shell is subjected to. The pendulum-like
rotation dynamics is created by aerodynamics effects in a
way that is well understood and documented [28]. Our idea
is to detect the instantaneous frequencies of the yawing and
pitching oscillations and to interpret them as information on
the velocity. In details, we estimate one or several frequencies
using a super-resolution technique and deduce the value of
the velocity from a state observer filtering this information
and reconciling it with a priori knowledge taking the form
of analytic expressions involving aerodynamic look-up tables
available for the specific shell under consideration. The tech-
nique employs frequency detection algorithms ([34]) that are
well suited for the time-varying signals generated during the
ballistic flight. The paper presents the whole methodology,
initiated in [35], starting from a frequency analysis of the
equations of motion, exposing the observer design along with
a proof of convergence, and reporting experimental results.

II. PROBLEM STATEMENT

Notations

The main notations used in the aerodynamic model of the
shell are listed in Table I. Each aerodynamic coefficient Ĉ·
in this table is specific to the shell shape and size, and is
a function of the Mach number and the incidence angles of
the shell.

For application on gun launched (artillery) ammunition,
a navigation system must satisfy various requirements :
surviving the (strong) gun acceleration, enduring very high
spinning rates, relying on low cost-sensors, being started in-
flight. For these reasons, various research have considered
algorithms using only accelerometers and magnetometers
(leaving gyrometers out of the scope). Advantageously, some
accurate aerodynamic models of the shell can be incorporated
in the navigation algorithms if an in-flight estimate of the
Mach number is available. For this reason the work presented
in this article is of practical interest. In Figure 1, the typical
structure of a navigation algorithm is described. The velocity
information is instrumental to estimate the incidence of the
shell.

The shells, in addition to being spin-stabilized to mitigate
the effects of side wind, follow a gyroscopic precession and
nutation motion (depicted by Figure 2). Those frequencies of
the yawing and pitching motions can be observed on the raw
measurements of the strapdown inertial sensors (although
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M Mass of the shell
D Caliber of the shell
S Section of the shell
Il Longitudinal moment of inertia
It Transverse moment of inertia
v Scalar velocity of the shell w.r.t the air
h Altitude of the shell
ρa(h) Air density
p Spinning rate of the shell in the body frame
ωp Precession frequency of the shell
ωn Nutation frequency of the shell
ĈD Drag force coefficient
ĈLα Lift force coefficient
Ĉmag−f Magnus force coefficient
Ĉmag−m Magnus moment coefficient
Ĉlδ Rolling moment coefficient
Ĉspin Roll damping moment coefficient
ĈMq Pitch damping moment coefficient
ĈMα Overturning moment coefficient

TABLE I
NOMENCLATURE.

one needs to discriminate them from the spinning rate before-
hand) and provide information on the aerodynamics of the
shell. As it will be explained in Section 3, those frequencies
carry information on the Mach number, the spinning rate of
the shell and its aerodynamics coefficients. In this article,
we propose a methodology to estimate this variable, which
is pictured in Figure 3. It combines a frequency detection
algorithm and a state observer.

III. FREQUENCY CONTENT OF THE EMBEDDED
INERTIAL MEASURMENTS

The high velocity shell under consideration is a 6 DOF
rigid body which is given a high initial translational velocity
and a high spinning rate by the gun launch. The orientation
of the rigid body is defined by a set of three Euler angles
(here ‘ZXZ’ angles are chosen, following the nomenclature
of [36], where, classically, the spin is defined as the rotation
about its axis of least inertia). The shell is symmetrical and
has a constant mass during the whole flight. It is subjected to
drag and lift forces, Magnus, overturning, pitch-Damping and
roll-damping moments [28], [37]. These forces and moments
have been well-studied. Experimentally validated models are
known (see e.g. [38], [39]). Compact expressions are given
in Table II, they involve numerous lookup tables that will be
discussed later on.

During the whole flight (typically lasting less than 45 sec
for ballistic flight and less than 2 sec for flat-fire) the spinning

Fig. 1. Cascade filtering of a shell attitude and position. The velocity
information is of interest to estimate the incidence of the shell.

Fig. 2. Precession and nutation angles of the shell during a typical shell
flight.

Fig. 3. Method to estimate the velocity of the shell.

TABLE II
LIST OF FORCES AND MOMENTS ACTING ON THE SHELL WITH COMPACT

EXPRESSIONS FROM [28].

rate remains very high, and the angles of attitude w.r.t. the
wind frame remain small. Therefore, it is possible to study
the attitude dynamics, and the translational dynamics in turn,
under the assumption of small-angles. Some lengthy calcula-
tions allow one to determine the frequencies appearing in the
solution of these dynamics. These frequencies are the results
of the interferences caused by the nutation, precession and
spin rotations, and mirror the fast and slow epicyclic yaw
mode described in [28].

Through these assumptions, the nutation and precession
frequencies, ωn and ωp < ωn respectively, have the sym-
metrical forms (refer to Table I for notations)

ωn =
pIl
2It

+
v
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2 )

1
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where Il and It are longitudinal and transverse inertial
coefficients and where

P1(v, h, p) = a1(v, h)
2 − b1(v, p)2 − 4a2(v, h)

P2(v, h, p) = 4b2(v, h, p)− 2a1(v, h)b1(v, h)

with

a1(v, h) = −BM Ĉmq +BF (ĈLα − ĈD)
a2(v, h) = −BM ĈMα

b1(v, p) =
p

v
D
Il
It

b2(v, h, p) = b1(BF ĈLα −BM Ĉmag−m
It
Il
)

BF (h) =
ρa(h)SD

2m
, BM (h) =

ρa(h)SD
3

2It

Aerodynamic drag near Mach 1.0
The aerodynamics coefficients appearing in these last

factors are defined in Table II. Importantly, these aerody-
namic coefficients are functions of the Mach number and
are specific to the shell considered. ĈD describes the drag
force, ĈLα the lift force, Ĉmag−m the Magnus moment,
ĈMα the overturning moment, and Ĉmq the pitch-damping
moment. The Mach number is a function of the velocity and
the altitude, as it depends on the air density surrounding the
shell.

The drag is a dominant effect and deserves some more
discussion. Some effects of the shell shape on the drag
coefficient at various Mach numbers have long been stud-
ied [28]. Those effects depend on a number of dimensionless
variables. The fluid mechanism that transmits the drag force
to the shell consists of two parts: surface pressure and surface
shear stress (a.k.a. skin friction drag). The force generated
on the forebody and the base of the shell are different.
Therefore, the various components of the drag force behave
in significantly different ways in the various speed regions.

Fig. 4. Mapping of the considered drag coefficient (scales are omitted due
to confidentiality reasons)

At subsonic flight speeds (below Mach 1.0), the drag
coefficient is essentially constant. It rises sharply near Mach
1.0, then slowly decrease at higher supersonic speeds. The

sudden rise appearing just below Mach 1.0 is caused by the
formation of shock waves in the flow-field surrounding the
shell [28].

IV. DYNAMIC FREQUENCY MEASUREMENT :
MEASURING VARYING FREQUENCIES

A. Definition of the frequency of interest
The radial strapdown accelerometers measure a projection

of the aerodynamic forces in the body frame. In other words,
their signal is proportional to the incidence angles of the
shell, containing the precession and nutation frequencies
defined in eqs. (1) and (2).

In eqs. (1) and (2), the spinning rate p plays the same
biasing role by a factor that is independent from the ve-
locity. There are a number of possible choices to isolate
the velocity-dependent factor appearing in both equations.
Because p is easy to estimate (see e.g. [40], [41], [42], [43],
[44], mostly because it is much higher than the nutation and
precession rate), a simple strategy is to simply subtract it
from the detected frequencies. In the following, we define
our “measurement” ωmeas as

ωmeas = ωn −
p

2

Il
It

=
p

2

Il
It
− ωp =

ωn − ωp
2

(3)

This last equation stresses that the variable of interest ωmeas
can be determined by three formulas, each of which have
pros and cons, as will be briefly discussed in the numerical
experiments in Section VI.

B. Frequency detection using super-resolution
A common practice to estimate the frequency of a

monochromatic signal or a multisinusoidal signal is to use
Fast Fourier Transform (FFT) over sliding windows. This
state-of-the-art technique is at the heart of the periodogram
technique [45] and is often employed in various applicative
situations. It is not really well-suited in the case considered
here. The main culprit is that FFT is only effective in cases
where a relatively large window can be used to estimate
the frequency. If this assumption fails, then numerous mali-
cious effects appear such as spectral aliasing, and frequency
leak [45]. This is not the case in the application considered
here, because the signal from which frequency must be
detected is decaying over time (see [35]). Employing a
large window violates the assumption that the signal has
constant magnitude, which is implicitly required for the FFT
technique to produce quality results.

Instead, we use a super-resolution technique. In a nutshell,
this technique is optimization-based (in the time domain).
It seeks the frequencies of a multisinusoidal signal as the
solution of a best-fit problem. Various implementations exist,
from the classic Prony based methods (MUSIC [46]) to more
recent total-variation norm minimization methods [34], [47].
On top of improving resolution, the methods have proven
capabilities of outlier rejection even with high noise/signal
ratios. To work effectively, super-resolution methods require
that the numbers of frequencies to be located in the signal
be known in advance. This is precisely the case in our ap-
plication, as we have seen in it Section III. Super-resolution
methods can deal with short time windows, typically half a
period of the lowest frequency to be detected is enough. This
is a very helpful feature in our case. We report in Figure 5,
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Fig. 5. Detection of the frequencies p− ωn < p− ωp < p contained in
the signal from one of the transverse accelerometers (simulation results).

a typical example where the spin, and linear combinations
with nutation and precession frequencies are detected as the
sharp peaks of the spectrum obtained from MUSIC.

Assuming that the frequency-detection algorithm dis-
cussed above has been implemented, we will now refer to
its output as a measurement

y , ωmeas (4)

Even with relatively large amounts of noise, this output is
relatively reliable. It is not noise-free, as the output of the
super-resolution algorithm is by definition lying on a (fine)
grid of possible values. On occasions, the algorithm may
fail to provide a frequency value. Then, the measurement
will be faulty. In all cases, some filtering of this signal
must be performed. This is the purpose of the state observer
developed below.

V. DESIGN OF AN OBSERVER FOR THE
VELOCITY FROM FREQUENCY MEASUREMENT

A. System dynamics and output map
A measurement of the velocity v has been defined earlier

in Eq.(4). To filter it, we will design a state observer, relying
on the dynamics below

v̇ = f1(v, h, θ) ,
−ρa(h)SĈD(v, h)v2

2M
− g sin (θ)

y = f2(v, h, p) ,
v

2D
(P1(v, h, p)

2 + P2(v, h, p)
2)

1
4

cos

[
(
1

2
arctan

(
P2(v, h, p)

P1(v, h, p)

)]
Two of the variables appearing in the right-hand sides above
are in fact known in advance, at least to a certain degree
of accuracy, provided that they are well synchronized2: the
planned altitude h(t) and slope angle of the trajectory θ(t),
and the real spinning rate p(t) are known. This allows us to
rewrite the dynamics as a single-state time-varying nonlinear
dynamics

2which is easily done by detecting gun fire from any of the embedded
signal, e.g. any of the accelerometers

v̇(t) ,f(v, t) (5)

y(t) ,g(v, t) (6)

Various plots of the mappings f and g are reported in
Figure 6 and Figure 7.

Fig. 6. Representation of f(v, t) (for a fixed t, at various altitudes).

Fig. 7. Representation of g(v, t) (for a fixed t, at various altitudes).

Observer design for this nonlinear dynamics(5)-(6) seems,
at first, a routine problem. The main difficulty here is that g
in (6) is not one-to-one. In fact, a general property stemming
from the behavior of aerodynamic drag-induced effects near
Mach 1.0 (see discussion in §III), is that for any given t,
v 7→ ∂g

∂v (v, t) has, a fixed number N of zeros (at least 2),
that we call mi(t) with

m1(t) < ... < mN (t)

To clarify, those zeros are linked to specific fixed Mach
values. They represent time-varying critical velocities, be-
cause said velocities are linked to Mach values by the
sound velocity at the altitude h(t) reached at time t, via
the corresponding air density.
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This fact is illustrated in Figure 7, with N = 2 for a typical
ballistic trajectory of a 155 mm shell. We may call this the
non-bijectivity of the frequency-velocity mapping in transonic
regime. Finally, one can also note that f becomes steep in the
same regime (see Figure 6). However, it remains monotonic
w.r.t. v at all times. Some (tedious) analytical study reveals
that ∂ĈD

∂v remains small enough, for all v and t of interest in
this study, so that ∂f

∂v stays strictly negative and bounded3.
For a given trajectory, traveling through the atmosphere,

the mi are time-varying because the extremum points de-
pends on the Mach number, and thus on the air density
in addition to the velocity. For the rest of the analysis,
we consider that the mi are continuous and differentiable
functions of the time (de facto, they are continuous and
differentiable functions of the air density and the spinning
rate, which vary continuously over time), without any further
assumption on the aerodynamic coefficients.

For all applications considered in this article, i.e. shells,
speed and time ranges, the mapping f is a contraction in the
sense of [48], [49] as

∂f

∂v
< −γ < 0

for some γ > 0.

B. Observer design
The observer is quite easy to design, using the fact that f

defines a contractive mapping. However, the exponential
convergence stemming from this property is not sufficient
for practical application of velocity estimation (note that the
total flight time is short). To speed-up the convergence, we
make an active usage of the measurement y.

As discussed earlier, the output mapping is not one-to-
one. Locally, it is monotonic, but since the estimate from the
observer is the only way to guess whether the mapping is
currently increasing or decreasing, there is no straightforward
condition to determine the sign of the observer gain. This
problem is relatively frequent in control system theory, see
e.g. [50] and references therein.

What we propose is a gain-switching observer, following
a classic approach [51], [52], where the gain is a function
of the current estimate. To guarantee exponential conver-
gence, we consider the squared error as candidate Lyapunov
function and design the gain so that it is always decreasing.
This is achieved by shutting-down the gain in certain areas
near specific Mach numbers, where the derivative of g w.r.t.
the velocity changes sign. The on-off times are tailored
according to the properties of the aerodynamics model (upper
and lower Lipschitz constants).

C. Main result : convergence of the velocity observer
Let k and ε be two strictly positive numbers. Consider the

gain

K(v̂, t) , χ(v̂, t)k
∂g

∂v
(v̂, t) (7)

with

χ(v, t) =

{
0 if v ∈

⋃N
i=1]mi(t)− ε,mi(t) + ε[

1 otherwise
(8)

3Establishing this could be more involved for other shells, e.g. reentry
vehicles for which trajectories cover much wider velocity and time ranges.

Then, one can state the following result:

Theorem 1 (Main result): Consider the state dynam-
ics (5). Let us assume that there exists M > 0 such that
|v(0) − v̂(0)| < M , and that v̂(0) > mN (0) and v(0) >
mN (0). Then, there exists ε and kM such that the observer
v̂ defined by ˙̂v = f(v̂, t) + K(v̂, t)(y − g(v̂, t)) and (7)-
(8) produces an estimation error |v − v̂| which converges
exponentially to 0.

Proof:
Let δ and ε be two strictly positive numbers such that

v̂(0) > mN (0) + ε and v(0) > mN (0) + ε+ δ and kM > 0
satisfies

kM >
1

α

m

`
(9)

and
kM >

−1
β2T

log
( ε

M

)
(10)

where the following constants are defined (they depend
solely on the trajectory under consideration)

T , inf{t ≥ 0, v(t) ≤ mN (t) + ε+ δ}
m , max {ṁN (t), t ∈ [0, T ]}

+max {−f(mN (t) + ε, t), t ∈ [0, T ]}
` , min {|g(mN (t) + ε+ δ)− g(mN (t) + ε, t)|, t ∈ [0, T ]}

α , min
0≤t≤T,mN (t)+ε≤v≤+∞

(|∂g
∂v

(v, t)|)

β , max
0≤t≤T,mN (t)+ε≤v≤+∞

(|∂g
∂v

(v, t)|)

Note that α and β are properly defined as long as we
prolongate our mapping of the aerodynamic coefficients by
a continuous and differentiable saturation to the end of our
mapping ; in practical, v stays bounded in a finite-flight (the
shell has finite energy and the altitude has to remain positive),
and v̂, even though having a different dynamics, only gets
closer to v as t increases, bounding him as well.

Set V = 1
2 (v − v̂)

2 as a candidate Lyapunov function ; it
is strictly positive, and we will show its time derivative is
strictly negative along the system trajectory for any initial
conditions satisfying the assumptions of the statement. We
will actually show the convergence to be exponential by
ensuring V̇ < −2γV .

By the mean-value theorem applied to f and g, separately,
for any t ≥ 0, there exists at and bt in between v and v̂ such
that :

V̇ = (v − v̂)2(∂f
∂v

(at, t)−K(v̂, t)
∂g

∂v
(bt, t))

which expands as

V̇ = 2V

(
∂f

∂v
(at, t)− χ(v̂, t)kM

∂g

∂v
(v̂, t)

∂g

∂v
(bt, t)

)
As we know it, ∂f

∂v < −γ < 0. On the other hand the
sign of the second factor is less obvious. In fact, from
the definition of the indicator function (8), if χ(v̂, t) is
non-zero, then ∂g

∂v (v̂, t) and ∂g
∂v (bt, t) are of the same sign

for any bt in between v and v̂. We will show firsthand that
this is the case for t ∈ [0, T ], implying that V̇ < −2γV
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on that domain, then we will show that this inequality also
holds for t ≥ T for a similar reason.

1) Before time T: By definition, for t ∈ [0, T ], v(t) ≥
mN (t)+ε+δ. Let us show that for t ∈ [0, T ], v̂ ≥ mN (t)+ε.

Given any t ∈ [0, T ] such that v̂(t) = mN (t) + ε, then
˙̂v(t) = f(mN (t) + ε, t) + kM

∂g
∂v (mN (t) + ε, t)(g(v, t) −

g(mN (t) + ε, t)).
We show, from (9), that in this case ˙̂v(t) > ṁN (t). This

quite easily leads to the fact that for t ∈ [0, T ], v̂ ≥ mN (t)+
ε.

We thus concludes that for t ∈ [0, T ], χ(v̂, t) = 1, and
that kM ∂g

∂v (v̂, t)
∂g
∂v (bt, t) < 0.

As a result, V̇ < −2γV on [0, T ].

2) After time T: Let us show that V̇ remains strictly less
than −2γV after time T .

Because of (10), one gets kM > −1
β2T log

(
ε

|v(0)−v̂(0)|

)
and

obviously V̇ < −2β2kMV on [0, T ] by definition of β, we

get V (T ) < V (0)e−2β
2kMT < V (0)

(
ε

|v(0)−v̂(0)|

)2
which

gives us |v(T )− v̂(T )| < ε.
Let us assume that there exists a minimal tc > T where

V̇ ≥ −2γV . For t ∈ [T, tc[, we have V̇ < −2γV and thus
|v(tc)− v̂(tc)| < ε.

As a result, there are two (exclusive) alternatives : either
v̂(tc) belongs to

⋃N
i=1]mi(t)− ε,mi(t) + ε[, which nullifies

χ and sets the gain to zero ; or v̂(tc) does not, and then
obviously ∂g

∂v (v, t) is of the same sign as ∂g
∂v (v̂, t), because

|v(tc) − v̂(tc)| < ε and then neither of the mi(tc) can be
between v(tc) and v̂(tc) ; in that case k ∂g∂v (v̂, t)

∂g
∂v (bt, t) < 0.

Either way, V̇ (tc) < 2γV , which is a contradiction.

In summary, V is a Lyapunov function for our observation
system (v, v̂). The convergence is exponential, as V̇ <
−2γV with γ > 0. This concludes the proof.

VI. EXPERIMENTAL RESULTS
The observer proposed in this article has been tested on

real flight data, and, if the initialization is inaccurate, it
represents a significant improvement compared to an open-
loop estimation. Typical results obtained on experimental
data are reported in Figure 8. The shell under consideration is
a 155 mm in ballistic flight. An accurate measurement of its
air velocity is obtained by a state-of-the-art ground radar. As
is visible in Figure 8, our method allows one to approach
this true value, even from a very poor initial estimate of
the shell velocity (20% error). The flight last approx. 55 s.
Transonic regime is reached at approx 9 s. The observer is
able to improve its estimate up to approx. 30 s. when the
shell reaches its culmination point (highest altitude). After
this point, the yawing and pitching motions have too small
magnitude to provide further information on the velocity.
The estimate does not make much further progress past this
point.

Several issues remained to be solved, as MUSIC algorithm
only reads p, p−ωn and p−ωp during the ascending part of
the flight, and p, p− ωp after the peak ; as the accuracy on
ωp is really poor, we are able to construct the measurement
ωmeas and run our observer during the ascending part of the
flight only.

Fig. 8. Velocity Observer compared to an open-loop estimation (experi-
mental results).

VII. CONCLUSIONS AND FUTURE WORKS
As we have illustrated it in last section, the estimation

methodology has been tested on real flight data, and repre-
sents a significant improvement compared to an open-loop
estimation.

Even though it is not the focus of this paper, one should
remember we are considering here shells without thrust,
controlled by impulsive actions near the end of the flight
. The converging time of our observer thus is not relevant in
that regard, as long as it has converged before the controller
is used.

This estimation of the velocity enables us to use the
aerodynamic model of the shell to carry out an incidence
estimation, which is a prerequisite to know the orientation
of the shell and integrating its position, and makes this a key
part of any navigation algorithm. This is certainly a path to
explore in future works.

As briefly told in the introduction, estimating the velocity
is required to make full use of the aerodynamic model of the
shell ; but the frequency analysis holds more information, as
soon as one is able to measure the precession and nutation
amplitudes as well. In fact, if the firing velocity is initialized
correctly, the open-loop estimation of the velocity is already
quite accurate ; using this estimation and the best-known
aerodynamic coefficients (namely, the Drag and the Lift
coefficient), one might be able, through a complete frequency
analysis, to estimate the incidence of the shell without prior
knowledge on the Magnus moment, overturning moment and
pitch-damping moment coefficient.

Fig. 9. Toward a reduced aerodynamic model through low frequency
analysis
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