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Abstract— This paper presents an inertial navigation filter
designed for an automotive vehicle not equipped with any
GPS receiver. The task of this filter is to provide relative
position information over a relatively long period of time (tens
of minutes). The filter consists of several partial state observers
that, one after another, reconstruct key information for the
whole state estimation. The observer relies on a sufficient
condition to guarantee uniform complete observability of a
general bounded linear time-varying system using (point-wise)
differential rank conditions. From this condition, we construct
a collection of filters well-suited for each possible trajectory of
the vehicle. This results in temporally interconnected observers
which are of the Kalman filter type. It is proven that each of
them asymptotically converges to zero. We illustrate this design
with trajectory estimation obtained on simulation data. Finally,
experimental results using low-cost sensors show the potential
and the relevance of the approach.

I. INTRODUCTION

In this paper, we expose the design of a navigation filter for

an automotive vehicle not equipped with any GPS receiver.

Among others, low-cost inertial sensors (MEMS) and a

velocimeter are used to determine, through a data fusion

algorithm, relative positioning information over a relatively

long period of time (tens of minutes). The originality of the

approach is to propose an observer specifically designed to

take advantage of well-known properties of the trajectory and

the dynamics of the vehicle under consideration.

Inertial navigation is a well-established technique which

has taken key roles in the aerospace industries [1][2], as

well in other areas such as undersea navigation or dynamic

positioning systems [3]. It has also recently emerged as an

enabling technology under the forms of MEMS sensors in

numerous low-cost applications (small UAVs [4][5], ground

robotics, cell-phones, among others). Yet, its main limitation

is the unavoidable drift of the estimates [1]. The culprits are

the biases of the sensors, mostly accelerometers and gyro-

scopes, which result in drift in velocity and, consequently,

in position estimates [6]. With MEMS sensors, those drift

appear over short time periods (tens of seconds [7]). This

usually discards them for most critical applications if they

are not complemented by some other source of information.

A key feature of the setup we consider in this paper is

the availability of a velocimeter which provides a relatively

dependable estimate of the vehicle body velocity. This sensor

is usually available in most vehicles today. It can be obtained
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through various sensor technologies application (e.g. Doppler

radar [8], camera [9], Pitot tube). Each technology has its

own flaws and advantages [10]. Yet, this scalar information

is not sufficient to estimate the motion of the vehicle as ro-

tations come into play. Gyroscopes can be used to determine

rate-of-turn information but they also have (non-constant)

biases which are causes of substantial drifts.

The contribution of this paper is the design of a navigation

filter which cancels these drifts in the sense that the sources

are identified and estimated on-board. The proposed design is

based on an analysis of observability along various possible

trajectories of the system. These investigations serve to prove

convergence of a collection of Kalman filters used to estimate

the states of linear time-varying (LTV) dynamics.

Usually, the convergence of the Kalman filter is proven

under the assumption of Uniform Complete Observability

(UCO). Yet, from its definition, the UCO property is dif-

ficult to establish since it calls for the computation of the

observability Grammian, and so, of integrals involving the

transition matrix.

We would like to have at our disposal a differen-

tial condition, similar to the usual Kalman rank criterion

for linear time-invariant (LTI) systems. In the literature

[11][12][13][14], some prospects have been proposed, but

without equivalence to UCO property. We will propose a

sufficient condition based on differential observability.

In the case under study, the trajectory involves various

dynamics and measurement equations depending whether

straight-line motion or curve motion is under consideration.

As will be demonstrated, the global problem of full-state es-

timation can be handled by sequentially estimating subsets of

the full state, each one being estimated during an appropriate

part of the trajectory.

We consider the vehicle as a six degrees of freedom (DOF)

rigid body moving without sideslip. The vehicle is charac-

terized by a tridimensional position, a curvilinear velocity

and three attitude angles. We assume it is equipped with

a velocimeter, a trihedron of accelerometers, a trihedron of

gyroscopes, and an altimeter. Certainly, these sensors are not

sufficient to get the absolute position and heading of the

vehicle, but this is not our goal. Only relative positioning is

desired here.

The work presented in this article is inspired by the

observers interconnection theory (see [15]). Separately but

simultaneously, we estimate the velocity, the angular dynam-

ics (angles, rates and biases), and finally, the accelerations

(and the biases associated to the sensors). The main difficulty

is to estimate the angular dynamics. For this task, we

propose temporally interconnected observers (TIO) arguing
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that during straight-line motion, one can estimate the pitch

dynamics, while, during curve motion, it is possible to catch

the roll dynamics. Yaw bias can be estimated at rest. From

these angles, one can estimate the accelerometers biases, so

that accelerometers can be used to exert fault detection on

the velocimeter.

The paper is organized as follows. In Part II, we recall

some definitions of observability, along with ways to estab-

lish this property. We give a sufficient condition for UCO and

recall that it guarantees the convergence of Kalman filters.

In Part III, we detail the problem under consideration and

present the TIO designed for this problem. The merits of this

approach are illustrated with simulation results. In Part IV,

we present results from an actual implementation on board

an automotive system.

II. A CONDITION FOR UNIFORM COMPLETE

OBSERVABILITY

We start with some recall on UCO. Consider a linear time-

varying (LTV) plant, with A(t),B(t),C(t) analytic:
{

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) =C(t)x(t)

(1)

For now, the (very general) problem under consideration

is the asymptotic reconstruction of the state from the knowl-

edge of A(t), B(t), u(t), C(t) and y(t).

A. Complete Observability and Uniform Observability

The previously mentioned observation task can be

performed using a Kalman filter (others choices are

possible using time-varying observation gains, see e.g.

[16][17][18][19]). The convergence of the Kalman filter

can be proven using some observability properties of the

system (1). As is well known (see e.g. [14]), point-wise

observability is usually not sufficient, and in fact, UCO

property has to be established. This property follows from the

complete observability (CO) and the uniform observability

(UO) recalled below for convenience.

Note Φ(s, t) the transition matrix associated to A.

∂Φ

∂ t
(t,s) = A(t)Φ(t,s) Φ(t, t) = I

Definition 1: [20] The system (1) is CO if and only if

every present state x(t) can be determined when A(s) and

C(s) and y(s) for s ∈ (t0, t) are known for some t0(t)< t.

Theorem 1: [20] The system (1) is CO if and only if for

every t there exists a t0(t)< t such that

W ∗(t0, t) =
∫ t

t0
ΦT (s, t)CT (s)C(s)Φ(s, t)ds

is positive definite. The application W ∗(t0, t) is the recon-

structibility Grammian.

Definition 2: [20] The system (1) is UO if and only if

there exists γ,δ ,σ so that for every t, W ∗(t−σ , t) is positive

definite and

0 < γI ≤W ∗(t −σ , t)≤ δ I

The discussed UCO property is defined below.

Definition 3: [20][21] The system (1) is UCO if the

following relations hold for all t:

(i) 0 < α0(σ)I ≤W ∗(t −σ , t)≤ α1(σ)I

(ii)

0 < β0(σ)I ≤ ΦT (t −σ , t)W ∗(t −σ , t)Φ(t −σ , t)≤ β1(σ)I

where σ is a fixed constant .

In the case of bounded matrices, the following theorem

provides a simpler necessary and sufficient condition.

Theorem 2: [22][23] A bounded system [A(t),B(t),C(t)]
is UCO if and only if there exists σ > 0 such that for all t,

W ∗(t −σ , t)≥ α0(σ) I > 0

Determining whether the uniform lower boundedness of

W ∗(t −σ , t) holds is usually considered as a very difficult

task. In general, computing the transition matrix is involved

and computing W ∗(t −σ , t) is hardly tractable. Much more

conveniently, a point-wise investigation of the observability

of the analytic system (1) can yield interesting conclusions.

B. Differential Observability

In [12], the possibility to establish observability from the

study of the observability matrix defined below has been

investigated. A theorem exposing a rank condition to prove

the CO on an interval (see also [24]) is as follows.

Definition 4: [12] The observability matrix Qo(t) is de-

fined below, where n is the dimension of x:







Qo(t) =
[

Q0(t) Q1(t) . . . Qn−1(t)
]

Q0(t) =CT (t)
Qi+1(t) = Q̇i(t)+AT (t)Qi(t)

Theorem 3: [12] The system (1) is CO on the interval

(t0, t1) if Qo(t) has rank n for some t ∈ (t0, t1).

Interestingly, in the same paper [12], the notion of UO

on an interval is also considered: the difficulty to find an

uniform (independent of the time) bound for the observability

Grammian is alleviated by the knowledge of bounds on the

time.

Definition 5: [12] The system (1) is said to be UO on the

interval (t0, t1) if Qo(t) has rank n for all t ∈ (t0, t1).

We generalize this approach by considering the following

sufficient condition for UCO (in the sense of Definition 3).

Theorem 4: The bounded system (1) is UCO if there

exists µ > 0, m ∈ N such that for all t:

O(t) =
(

Q0(t) . . . Qm(t)
)







QT
0 (t)
...

QT
m(t)






≥ µ I > 0 (2)

The proof of this "folk" result is in the appendix because

we were not able to give a reference containing a complete

proof, and to make the paper self-contained.

C. Existence of an observer

Classically, the UCO property serves to guarantee the

convergence of Kalman filters.

Theorem 5: [20][25][26] If system (1) is UCO, then there

exists an observer of the form:
˙̂x(t) = A(t)x̂(t)+B(t)u(t)−K(t)(C(t)x̂(t)− y(t))
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The local observability matrix (2) is calculated below (we

omit t for readability):

O(t) =
(

Q0(t) Q1(t) Q2(t) Q3(t)
)









QT
0 (t)

QT
1 (t)

QT
2 (t)

QT
3 (t)









(20)

=





















1 0 0 0 0

0 (r2 + ṙ2)u2 ṙu(r2u− ü)
−ruu̇

0 rṙu2

0 sym
u2 + u̇2

+(r2u− ü)2 0 ru(r2u− ü)

0 0 0 1 1

0 sym sym 1 1+ r2u2





















(21)

where sym stands for symmetric terms. As previously, thanks

to boundedness of the dynamics, the determinant of |O(t)−
sI| can be lower-bounded by a polynomial P0(s) with P0(0)=
r4

mu6
m > 0. Then, there exists µ > 0 such that O(t)≥ µ I ≥ 0.

This proves that the subset of variables X2 is UCO. Again,

it can be reconstructed using a Kalman filter. To update the

global state XII , we use the following equations

q(t) = qm(t)−bq(t0), r(t) = rm(t)−br(t0) (22)

D. Observer Synthesis

1) Observable states:

Since the systems (7-8), (9-11) and (17-19) are UCO,

thanks to Theorem 5, one can construct, for each one, a

converging Kalman filter. For each system Si, we solve the

Riccati equation with Mi the state residual covariance matrix

for the subset Xi (defined in Eq. (7,9,17) respectively)

Ṁi(t) = Ai(t)Mi(t)+Mi(t)A
T
i (t)−Mi(t)C

T
i W−1

i CMi(t)+Vi

(23)

State noises and measurement noises variance matrices are

diagonal. For the stationary model,

W0 = diag
([

σ2
a σ2

g σ2
g σ2

g 0 0 0
])

,
V0 = diag

([

0 σ2
b σ2

b σ2
b 0 0 0

]) (24)

for the straight-line motion model,

W1 = diag
([

σ2
a σ2

g

])

, V1 = diag
([

0 0 σ2
b σ2

q

])

(25)

and, for the curve motion model,

W2 = diag
([

σ2
a σ2

g

])

, V2 = diag
([

0 0 0 σ2
b σ2

p

])

(26)

where σg (resp. σa) is set to the standard error of the

gyroscope (resp. the altimeter) and σb, σp, σq, σr are the

process noise scaled to cover all uncertainties concerning

the dynamics of the biases and of the angular rates.

These three temporally interconnected observers (TIO)

will be used one at a time according to a switching policy

which we now detail.

2) Switching policy:

In order to determine when to switch from one Kalman

filter to another, we need to propagate the whole state XII .

Simple thresholds on the estimates of u and r serve to define

the switching policy. We also propagate the state residual

covariance vector MII .

We define

MII =
[

Mz Mφ Mθ Mp Mq Mr Mbp
Mbq

Mbr

]T

During stops, the
[

Mz Mp Mq Mr Mbp
Mbq

Mbr

]T

vector is updated according to Eq. (23,24) and the remaining

coordinates of MII are kept constant.

During the straight-line motion, the
[

Mz Mθ Mbq
Mq

]T
vector is updated according to

Eq. (23,25) and the remaining coordinates of MII are

updated as follows






Ṁφ = 2Mp

Ṁp =−M2
p/(σ

2
g +Mbp

)+σ2
p , Ṁbp

= σ2
b

Ṁr =−M2
r /(σ

2
g +Mbr

)+σ2
r , Ṁbr

= σ2
b

(27)

During the curve motion, the
[

Mz Mφ Mθ Mbp
Mp

]T
vector is updated according

to Eq. (23,26) and the remaining coordinates of MII are

updated as follows
{

Ṁq =−M2
q/(σ

2
g +Mbq

)+σ2
q , Ṁbq

= σ2
b

Ṁr =−M2
r /(σ

2
g +Mbr

)+σ2
r , Ṁbr

= σ2
b

(28)

3) Simulation results:

To illustrate the merits of our proposed observer, we report

some simulation results. A synthesis model of a 6 DOF rigid

body with longitudinal velocity and angular rates as inputs

is considered. A representative succession of curves and

straight lines is simulated. Measurements are polluted with

Gaussian white noises, and pink noises are added to simulate

the biases of the gyroscopes. Modeled errors and biases are

representative of typical considered low-cost MEMS sensors

for automotive applications. In the figures, we note "TIO"

values estimated with Temporally Interconnected Observers

and refer to debiased values with the term "ZUPT" for

Zero Velocity Update which is a reference solution for this

problem (see [27] for details).

In Fig. 4, one can see the estimated pitch bias (blue),

the real pitch bias (green) and the debiased pitch bias (red).
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Debiasing is obtained by a simple technique consisting in

removing the mean value of the bias during the stationary

phase. At the beginning of the simulation is a stationary

phase: the estimated bias converges towards the real bias.

After this first phase, one can observe a succession of varying

values and constant parts. The parts when the bias estimation

varies are straight-line motions during which the pitch bias

is observable. It is kept constant in curve motion. The TIO

bias is centered around the real bias but remains updated

continuously.2 The mean error on the value of the bias is

divided by 4 between the ZUPT pitch bias and the TIO pitch

bias. This is a substantial improvement.

Figure 5 reports comparisons of the TIO pitch angle (blue)

and the ZUPT pitch angle (red) to the real pitch an-

gle (green). The mean error is divided by 50. This vast

improvement is essentially due to the altimeter which, as

noted in Eq. (14), provides observability on the pitch angle.

One clearly sees that TIO does not disturb this estimation

in spite of a coupling between roll and pitch angles during

curve motion.

In Fig. 6, one can see the TIO roll bias (blue), the real roll

bias (green) and the ZUPT roll bias (red). During straight-

line motion, TIO roll bias is kept constant and its estimate

is updated only during curve motion. Each correction step

is relatively effective and the estimate of the roll bias is

2A simple second order model for the bias would suppress the high fre-
quencies in the estimated bias dynamics without modifying the observability.
This would have yielded some additional low-pass filtering property.
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improved after each curve motion. The mean error is divided

by 2.

The benefits of the use of TIO are also emphasized

in Fig. 7 where the TIO roll angle (blue), the real roll

angle (green) and the ZUPT roll angle (red) are reported.

For each straight-line motion, one can see the TIO roll

angle becomes erroneous because of the natural variations

of the bias. Each curve motion allows to estimate the

angle (correction of the value) and the bias (correction of

the drift). On overall, with the proposed TIO, the mean error

on roll angle is divided by 10.

IV. CONCLUSION

An observer for the angular dynamics of an automotive

vehicle has been presented under the form of temporally

interconnected observers (TIO). This proposed observer de-

sign estimates the roll angle during curves and not during

straight lines. Beyond the improvement of the estimation of

the roll and pitch angles, these TIO permit to determine the

projection of the gravity on each accelerometer with a better

accuracy. It is then possible to estimate accelerometers biases

and, then, to detect faults on the velocimeter. This extra

feature (not detailed here for sake of conciseness) improves

the reliability of the velocity information, as can be seen in

Fig. 8.

As a conclusion, we now present some results obtained on

board an actual car which is equipped with a velocimeter, a

barometer and MEMS accelerometers and gyroscopes. This

setup is exactly the one considered in this study. A GPS

receiver is embedded to serve for sake of comparisons only.
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Fig. 8. Estimation of the velocity using complementary information
from continuously debiased accelerometers in case of malfunction of the
velocimeter
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Figure 8 shows that proposed interconnected and tempo-

rally interconnected observers are satisfying. The proposed

method allows a significant reduction of the various biases

of the sensors. Then, their information can be integrated to

determine position estimates. This yields some promising re-

sults. In Fig. 9, the trajectory (red) obtained by integration of

the estimated velocity with estimated attitudes of the vehicle

is presented and compared to the GPS information (blue).

After 20 minutes of driving, heading error is less than 15

degrees (without bias correction, it would be approx. 40

degrees) and position error is around 500 meters. These

results were obtained using solely the mentioned low-cost

sensors: a MEMS altimeter, a velocimeter, MEMS inertial

sensors. Interestingly, these results could be improved using

map-matching techniques [28]. The computed trajectory is

close enough to the actual one to be easily identified using

such technique.
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APPENDIX

Proof of the theorem 4

To a pair (x,s), we associate xs(t) the solution of

ẋs(t) = A(t)xs(t), xs(s) = x

So, we have xs(t) = Φ(t,s)x and ys(t) =C(t)xs(t).

The function t 7→ ys(t) verifies ẏ
(i)
s (t) = QT

i (t)xs(t).

Since the system (1) is bounded, there exist (a,c)∈R such

that

|A(t)| ≤ a , |Qi(t)| ≤ c ∀t,∀i ∈ {0,m}

It means that, for all (s, t),

exp(−a|t − s|)≤|Φ(t,s)| ≤ exp(a|t − s|) (29)

|ys(t)| ≤ cexp(a|t − s|)|x| (30)

First, consider the Taylor approximation with integral form

of the remainder term applied to ys(t)

ys(t) = Ps(t − s)+Rs(t,s)

with Ps(t − s) =
m

∑
i=0

(t − s)i

i!
y
(i)
s (s)

and Rs(t,s) =
∫ t

s

(t − r)m

m!
y
(m+1)
s (r)dr

One has
∫ s

−∞
exp(−λ [s− t])|ys(t)|

2dt ≥ TP −TR

where TP =
1

2

∫ s

−∞
exp(−λ [s− t])|Ps(t − s)|2dt

TR =
∫ s

−∞
exp(−λ [s− t]) |Rs(t,s)|

2dt

It is desired to find a lower bound for TP

TP =
∫ s

−∞
exp(−λ [s− t])

∣

∣

∣

∣

∣

m

∑
i=0

(t − s)i

i!
y
(i)
s (s)

∣

∣

∣

∣

∣

2

dt

=
1

λ

∫ 0

−∞
exp(τ)

∣

∣

∣

∣

∣

m

∑
i=0

τ i

i!

y
(i)
s (s)

λ i

∣

∣

∣

∣

∣

2

dτ

One can see that TP is a non negative quadratic form in ys(s),

. . . , y
(m)
s (s):

TP =
1

λ

(

yT
s (s)

y
(1)T
s (s)

λ
. . . y

(m)T
s (s)

λ m

)

Ξ















ys(s)
y
(1)
s (s)

λ
...

y
(m)
s (s)
λ m















where the matrix Ξ only depends of m. Moreover, the integral

TP is null if and only if all the coefficients of the polynom

in τ under the integral are null, that is to say, if and only if

all the components of all the derivatives y
(i)
s (s) are null. So

the matrix Ξ is positive definite and there exists α > 0 such

that:

TP ≥
α

λ 2m+1

m

∑
i=0

|y
(i)
s (s)|2

Otherwise, one has

xT
O(s)x =

(

ys(s) . . . ẏ
(m)
s (s)

)







yT
s (s)

...

ẏ
(m)T
s (s)






=

m

∑
i=0

|y
(i)
s (s)|2

So, with Eq. (2), one can conclude

TP ≥
αµ

λ 2m+1
|x|2 (31)

Concerning the term TR ,

TR =
1

λ

∫ 0

−∞
exp(τ)

∣

∣

∣Rs

( τ

λ
+ s,s

)∣

∣

∣

2
dτ

with

Rs

( τ

λ
+ s,s

)

=
∫ τ

λ +s

s

( τ
λ
+ s− r)m

m!
y
(m+1)
s (r)dr

=
1

λ m+1

∫ τ

0

ρm

m!
y
(m+1)
s

(

s+
τ −ρ

λ

)

dρ

From Eq. (30), one deduces that

∣

∣

∣Rs

( τ

λ
+ s,s

)∣

∣

∣≤
1

λ m+1

c

m!
|x|

∫ |τ|

0
ρm exp

(

a
|τ −ρ|

λ

)

dρ

≤
1

λ m+1

c

(m+1)!
|τ|m+1 exp

(

a
|τ|

λ

)

|x|

So, one can find an upper bound to TR

TR ≤
1

λ 2m+3

c2

[(m+1)!]2
|x|2

∫ 0

−∞
exp(τ)τ2(m+1) exp

(

2a
|τ|

λ

)

dτ

For any λ ∈ [2a+ ε,∞) with ε > 0, the integral is bounded
independently of λ , so there exists β > 0 such that

TR ≤
β

λ 2m+3
|x|2 (32)

Combining the equations (31) and (32), one obtains
∫ s

−∞
exp(−λ [s− t]) |ys(t)|

2dt ≥
αµ

2λ 2m+1
|x|2 −

β

λ 2m+3
|x|2

≥
αµλ 2 −2β

λ 2m+3
|x|2

where η = αµλ 2−2β

λ 2m+3 is strictly positive for all λ sufficiently

large in [2a+ ε,∞).
For all S ≥ 0, we have
∫ s

−∞
exp(−λ [s− t])|ys(t)|

2dt ≤
∫ s

s−S
|ys(t)|

2dt

+
c2

λ −2a
exp(−(λ −2a)S)|x|2

We can choose S =
log

(

2c2

[λ−2a]η

)

λ−2a
, thus

∫ s

s−S
|ys(t)|

2dt ≥
η

2
|x|2∀(x,s)

Now, ∫ s

s−S
|ys(t)|

2dt = xTW ∗(s−S,s)x

In summary, we have constructed S such that for all

(x,s), W ∗(s−S,s)≥ a1(S) I > 0. We apply Theorem 2 and

conclude that the system is UCO.
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