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Abstract— In this paper, we propose a simple model to
represent the slugging flow regime appearing in vertical risers.
We consider a one dimensional two-phase flow composed of a
liquid phase and a gaseous compressible phase. The presented
model can be applied to a wide class of systems, ranging from
pure vertical risers to more complex geometries such as those
found on actual sub sea petroleum facilities. Following ideas
from the literature, we introduce a virtual valve located at
the bottom of the riser. This allows us to reproduce observed
periodic regimes. It also brings insight into the physics of the
slugging phenomenon. Most importantly, this model reveals
relatively easy to tune and seems suitable for control design.
A tuning methodology is proposed along with a proof of the
existence of a limit cycle under simplifying assumptions.

I. I

In this paper, we study flows in risers, which are long pipes

connecting reservoirs to surface facilities for oil production

(see Figure 1). Severe slugging is a flow regime that arises

mostly when entering tail production of an oil field. It is

characterized by an unstable multiphase flow, where “slugs”

of liquid accumulate before being pushed upwards by the

gas. It is also characterized by oscillations of the pressure in

the pipeline and oscillations of flow rates of gas and oil at

the production end of the pipe. Although the phenomenon

itself can be observed and sometimes reproduced on test rigs,

its causes are not always known. The severe slugging flow

regime can damage the installations and, most importantly,

reduce the oil production. For these reasons, various tech-

niques have been investigated in view of suppressing it.

A common setup where a riser is used is depicted in Fig-

ure 1. It consists of a wellhead (source), a surface separator,

and a production choke at the outlet of the riser. The riser

length typically ranges from a few hundred meters to several

kilometers. To avoid instability, the most straightforward

technique consists in choking down manually the pipes

thanks to the choke located upstream the separator. Although

this solution stabilizes the flow, it reduces significantly the

oil production which, in turn, motivates the investigation of

dynamic control of the valve. Indeed, it is possible, in closed-

loop, to stabilize at higher flow rates. PID controllers can be

designed, using the bottom-hole pressure measurements as

inputs for the feedback loop [1], [2], [3], but often, they

require frequent re-tuning, and sometimes do not achieve

stabilization at all. This yields a potential for model-based
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control techniques and, consequently, motivates the elabora-

tion of models able to reproduce severe slugging.

Fig. 1. Common riser setup

Two classes of models can be found in the literature. The

most accurate type is based on (usually nonlinear) Partial

Differential Equations (PDE) representing two-phase (oil

and gas) or three-phase (oil, water and gas) flows. These

models ([4], [5],s [6], [7], [8], [9]) are able to reproduce the

slugging phenomenon in many cases, but fail to match the

behavior of real-life wells in other cases, in particular when

the instability comes from reservoir dynamics, which there

is little knowledge about. Unfortunately, it is not possible

to derive control laws from these models because of their

complexity. The second class of models is based on Ordi-

nary Differential Equations (ODE) and represents a different

trade-off between accuracy and complexity. A prime example

is the model presented in [10], which, besides its numerous

merits, does not sufficiently rely on physics to accurately

reproduce the physical response of the system. Besides, the

model presented in [11] is too complicated for model-based

control, and is difficult to tune. Finally, the model is not

general enough and is designed for a specific geometry. This

is also the case for the model of gas-lift presented in [12].

In this context, we believe that a key for control design

of riser systems is the derivation of simple physics-inspired

models capturing enough parameters to reproduce observed

phenomena (while limiting the calibration effort). This paper

represents a step toward this goal.

Our contribution is as follows. Consider a vertical riser

subjected to a constant input flow. The output flow of the

riser is controlled by a choke. Unstable flow regime can

occur, especially when the choke is largely opened, which,

unfortunately, corresponds to a point of industrial interest.

This kind of instability is also observed on related systems:

oil wells with a gas reservoir [13], [14], risers with low-point

[11], [15], [16]. Generally, switches of valves are reported
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to be at the birth of the oscillating phenomenas: downhole

choke plays a key role in the “casing-heading” in [12], [17],

while the geometric low-point acting as a valve is studied

in [11]. In the riser considered here, no such valve exists

or is even suggested by the geometry. Yet, we propose to

model the riser using a “virtual choke” located at a well-

chosen point at the bottom of the riser. In this approach, the

riser is modeled as a three-state set of ordinary differential

equations similar to those found in [12], [11], [18], [19]. We

can tune the model analytically to fit most physical systems

of interest.

The paper is organized as follows. After having briefly

presented the physical system under consideration and the

proposed model in Section II, we identify the successive

stages of the slugging phenomenon. It appears in great ac-

cordance with real-world observed slugging systems. Then,

based on this model, we investigate the existence of a

limit cycle in Section III. In Section IV, we present a

tuning methodology to calibrate the model and match the

characteristics of the oscillations, such as the bifurcation

point, frequency of oscillations and steady-state conditions.

A couple of case studies are presented. Finally, in Section V,

we discuss some of the limitations of the model and propose

possible ways of improvement. Conclusions are given in

Section VI.

II. S    

Consider the vertical riser depicted in Figure 1. To get in-

sight into the slugging phenomenon, which can be observed

even with constant inflows, we propose a model, pictured

in Figure 2, based on first principles (mass balances). It is

considered that the riser contains three distinct volumes, two

of which are filled with gas, and separated by a horizontal

virtual valve, while the last volume is filled with liquid.

This scheme stresses the possible existence of an obstructing

liquid interface at a certain location in the riser, which is

modeled by the virtual valve, preventing the gas from flowing

normally. This yields the formation of a large elongated

bubble (pictured in Figure 2) behind the interface. In this

elongated bubble, a pressure build-up occurs and eventually

generate instabilities. We now detail the model. A complete

nomenclature is given in Table I.

A. Modelling assumptions

1) Mass balances: The state variables are the masses of

gas in the elongated bubble (mg,eb) and in the riser (mg,r),

and the mass of liquid (ml,r) in the riser. Mass conservation

yields

ṁg,eb(t) = (1 − ǫ)wg,in − wg(t) (1)

ṁg,r(t) = ǫwg,in + wg(t) − wg,out(t) (2)

ṁl,r(t) = wl,in − wl,out(t) (3)

where wg,in and wg,out (resp. wl,in and wl,out) are the mass

flow rates of gas (resp. liquid) entering (in) the riser and

coming out (out) of the riser ; and wg is the mass flow

rate of gas through the virtual downhole choke. Note that,

Fig. 2. Schematic diagram of the system

in this model, a fraction of the gas flow (determined by

ǫ ∈ (0, 1)) goes directly in the upper part of the riser, whereas

the remaining accumulates in the bottom part of volume

Veb, causing a build-up of pressure. Besides, we make the

following assumptions, which will be discussed further in

Section V.

2) Description of mass flows: As mentioned above, the

inflows of gas (wg,in) and liquid (wl,in) are assumed constant.

The mass of gas in the riser is negligible compared to the

mass of liquid in the riser. Therefore, if wout is the total mass

flow rate through the production choke, one has

wg,out =
mg,r

mg,r + ml,r

wout ≈
mg,r

ml,r

wout

wl,out =
ml,r

mg,r + ml,r

wout ≈ wout

Besides, all the non constant flows are given by linearized

valve equations: they are linear functions of the pressure drop

over the choke under consideration (actual or virtual). We

also assume that there is no flowback through these valves.

This yields the following expressions

wg = Cg max
(

peb − pr,bh, 0
)

wout = Cc max
(

pr,top − ps, 0
)

u

where peb is the pressure of the gas in the elongated bubble,

pr,bh is the pressure of gas downstream this choke (bottom

hole), pr,top is the pressure upstream the production choke

and ps is the separator pressure. Cg and Cc are positive

constants.

3) Determination of pressures: The pressures in the riser

are given by the ideal gas law. The volume of the elongated

bubble Veb is assumed to be constant, whereas the gas

downstream the virtual choke is assumed to be compressible.

Its volume Vg,r depends on the mass of liquid in this part:

Vg,r = Vr −
ml,r

ρl
where Vr is the volume of the riser. Besides,
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the pressure drop over the riser is supposed to be gravity-

dominated (friction being neglected)

peb =
RT

MVeb

mg,eb

pr,bh = pr,top +
g sin θ

A
ml,r

pr,top =
RT

M
(

Vr −
ml,r

ρl

)mg,r

where θ is the mean inclination of the pipe, and A the cross-

section area.

B. Sustained oscillations of the proposed model

The proposed model (1)-(2)-(3) can reproduce oscillations

observed in experimental data such as that obtained from

a multiphase flow rig at StatoilHydro’s research center in

Porsgrunn, and also results obtained with state-of-the-art

multiphasic flow simulator OLGA c©. Figure 3 shows the

oscillations of pressures and mass flow rates of the model

compared to those of the OLGA model. The system under

consideration, which corresponds to the experimental rig

of Porsgrunn, is a 80m-long pipe, composed of a nearly

horizontal part of 70 m followed by a vertical part of 10 m.

The first part of the riser is slightly inclined downwards,

therefore the bottom of the vertical part is the lowest point

of the system. Following an idea from [11], this low-point is

where we assume that the virtual valve is located at. Under

this assumption, the volume V1 corresponding to the volume

of the elongated bubble is found to fill almost entirely the

horizontal part of the riser. To obtain the relatively accurate
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Fig. 3. Pressure and mass flow rate oscillations: model vs OLGA

fit of the model to the OLGA data in Figure 3, the proposed

model needs to be tuned. A tuning methodology is detailed

in Section IV. Before focusing on the theoretical existence

of a limit cycle for the proposed model, we now qualitatively

analyze the oscillations of the system. Three phases, depicted

in Figure 4 can be identified. The oscillations are created by

the accumulation of gas in volume Veb, which can only be

emptied through the virtual valve if the pressure peb is greater
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Fig. 4. The three stages of the oscillations

than the bottom-hole pressure pr,bh. The three phases are as

follows.

a) Phase 1: The bottom hole pressure is low because

the mass of liquid in the riser is small and causes only

a small gravity pressure drop. Therefore, the virtual valve

is open (pr,bh < peb) and gas flows out from Veb at a

high rate. Besides, the output flows are low, so that the

mass of liquid and pr,bh increase due to the constant input

flows. When pr,bh gets large enough, the flow through the

virtual valve decreases, and Veb starts filling again. Yet, ml,r

increases more rapidly than mg,eb, and therefore the valve

closes (pr,bh ≥ peb) at point A in the timeline.

b) Phase 2: After a sharp increase, ml,r reaches an

asymptotic value, whereas mg,eb increases steadily. There-

fore, the virtual valve remains closed until peb reaches the

asymptotic value of pr,bh and the valve opens again at point

B in the timeline.

c) Phase 3: When the valve opens, the riser is filled

with liquid (the value of ml,r is high) and the gas entering the

upper part of the riser is highly compressed. This increases

the pressure at the choke and therefore the outflows get very

high: the riser is suddenly emptied of its liquid and gas. It is

the blow-out phase. After this blow-out, the masses, the flows

and the pressures go back to low values, and, eventually, the

cycle repeats when point C in the timeline is reached.

We now focus on a more quantitative approach by inves-

tigating the existence of a periodic orbit.

III. E       

A. Motivations and simplifications

Classically, existence of a limit cycle is analyzed for planar

dynamical systems using the Poincaré-Bendixson criterion

[20]. As a matter of fact, one can easily realize that along

the observed limit cycle, the three dimensional state-space

model (1)-(2)-(3) can be reduced to a two-dimensional state

model. When wg = 0, there exists an affine relation between

mg,r and ml,r. This point is illustrated in Figure 5 where the
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Fig. 5. Mass of gas in the riser versus mass of liquid when the virtual

choke is closed

relevance of a model reduction through a linear fit of ml,r in

terms of mg,r is stressed.

Although this relation only holds perfectly during the

phases where the downhole choke is closed, it is expected

that it will not affect the slugging behavior to assume that

some linear relation holds for all times. We now investigate

the validity this statement.

The coefficient for the linear fit are chosen so that they

respect the steady-state equations. Thus, we seek two coeffi-

cients k1 and k2, consistent with the equilibrium values, and

such that ml,r = k1mg,r+k2. This yields k1 = −
b

ps+
wl,in
uCc

and k2 =

m∗
l,r

. As a consequence, the upstream choke pressure remains

constant, equal to its equilibrium value pc,eq = ps +
wl,in

uCc
.

Despite these simplifications, the model still reproduces the

oscillations of the bottom hole pressure, which shows that

the slugging structure of the model has been preserved

throughout these changes. These considerations yield the

following simplified model, where the variables mg,eb and

mg,r have been rewritten x1 and x2

ẋ1 = (1 − ǫ)wg,in −max (αx1 − γ + βx2, 0) (4)

ẋ2 = ǫwg,in +max (αx1 − γ + βx2, 0) − δ
x2

c − x2

(5)

where the constants α, β, γ, δ wg,in and c are expressed in

terms of the model variables and the fit coefficients k1 and

k2 in Table I, and were introduced for clarity purposes. We

now perform an analysis of the reduced dynamical system

(4)-(5).

B. Notations and assumptions

Consider the compact rectangular domain

D
de f
=

[

0, x∗
1

]

×
[

0, x∗
2

]

where

x∗1 =
γ + βc − δ − ǫwg,in

α

x∗2 = c

√

1 −
δ

2βc

Its boundary is ∂D
de f
= D1

⋃

D2

⋃

D3

⋃

D4. We also define

the four unit vectors Vi, i ∈ {1, 2, 3, 4} orthogonal to the

four components of ∂D and pointing outside of D. The

expressions of all these parameters are given in Table I.

Eventually, we make the following assumption

βc > δ + wg,in (A1)

so that x∗
1

and x∗
2

are properly defined and strictly positive.

C. Main result

Proposition 3.1: Under the assumption −α + β −
1
c

(wg,in+δ)
2

δ
> 0 , system (4)-(5) has a periodic orbit lying

in D. Conversely, if −α + β − 1
c

(wg,in+δ)
2

δ
< 0, system (4)-(5)

has a unique (locally) asymptotically stable stationary point.

1) Preliminary lemma: The proof of the proposition relies

on the following lemma.

Lemma 3.2: Every trajectory of (4)-(5) starting in D re-

mains in D for all future times.

Proof: We prove that for all x ∈ ∂D, the right-hand side
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Fig. 6. The trajectories of the system remain in D

of the differential equations (4)-(5), f (x)
de f
= ( f1(x), f2(x)),

points inside of D, as shown in Figure 6. Indeed, one has

∀x ∈ D1, f2(x) = ǫw(g, in) +max (αx1 − γ, 0) > 0

so that ∀x ∈ D1, f (x) · V1 < 0. One should notice that, this

calculus being valid for any x1, if x2 is strictly positive at

initial time, it remains so for all future times. Besides,

∀x ∈ D4, f1(x) = (1 − ǫ)wg,in −max (−γ + βx2, 0) > 0

so that ∀x ∈ D4, f (x) · V4 < 0.

Similarly to x2, if x1 > 0 at initial time, then x1 > 0 for

all future times. On D2, one can first realize that assumption

(A1) yields αx∗
1
+ βx2 − γ > 0. Therefore,

∀x ∈ D2, f1(x) = −
(

βc − δ − wg,in + βx2

)

According to assumption (A1), βc−δ−wg,in > 0, and we have

shown that x2 is positive, therefore, ∀x ∈ D2, f (x) · V2 < 0.

Once again, this result is valid for any x2, so that x1 < x∗
1

for all times. On D3, further investigation is needed. We aim
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at proving that f2(x) = ǫwg,in+max
(

αx1 − γ + βx
∗
2
, 0

)

−δ
x∗

2

c−x∗
2

is strictly negative for all x1 < x∗
1
. It is sufficient to prove

the result when αx1 − γ + βx
∗
2
> 0, for the result will hold

when it is not the case thanks to the max function. Using

the expression of x∗
2

and the fact that x1 < x∗
1
, one can easily

prove that

∀x ∈ D3, f2(x) < −
δ

2

1

1 −
√

1 − δ
2βc

< 0

Therefore ∀x ∈ D3, f (x) · V3 < 0, which achieves the proof

of the lemma.

2) Proof of the main result: Using this lemma, we now

prove Proposition 3.1.

Proof: Solving the equilibrium equations, one easily

sees that the system can only have one equilibrium, defined

by

x̄1 =

(1 − ǫ)wg,in + γ − β
wg,in

wg,in+δ
c

α
, x̄2 =

wg,in

wg,in + δ
c

The Jacobian matrix at this point has the following expres-

sion

J =













−α −β

α β − 1
c

(wg,in+δ)
2

δ













and its determinant is det(J) = α
c

(wg,in+δ)
2

δ
> 0. Therefore, the

equilibrium point is asymptotically stable for the linearized

system if

tr(J) = −α + β −
1

c

(wg,in + δ)
2

δ
< 0 (6)

and it is unstable if tr(J) > 0. If the equilibrium point is

unstable, the Poincaré-Bendixson theorem can be applied

thanks to Lemma 3.2. This shows the existence of a periodic

orbit lying in D for the nonlinear system (4)-(5). If tr(J) < 0,

the equilibrium point is also asymptotically stable for the

nonlinear system (see e.g. [20], Theorem 4.7). Interestingly,

a conservative estimation of the basin of attraction can be

obtained from a Lyapunov analysis. It consists of finding a

positively invariant set Γ lying in D, containing the origin,

on which the following Lyapunov function

V(x̃1, x̃2) =
1

2

(

ρ(x̃2)

α
x̃2

2
+ (x̃1 + x̃2)2

)

(7)

is decreasing. This construction is detailed in appendix A.

IV. T   

Furthering the previous qualitative analysis, it is possi-

ble to quantitatively fit measured oscillations. In details,

the model (1)-(2)-(3) can be tuned to meet the following

requirements

1) its equilibrium can correspond to desired pressures and

mass flows,

2) its bifurcation point (i.e. occurrence of instability) can

match the critical production choke opening value,

3) finally, the period of oscillations can match that of

observed ones.

In the following, an analytic study of the model leads to

a “plug-and-play” tuning procedure, requiring solely very

limited human input.

A. Matching steady-state operations

a) Equation of equilibrium: There can only be an

equilibrium if the two max functions appearing in (1) and

(2) have strictly positive values, because the input flow rates

are both non zero. In this case, we have

pr,top,eq = ps +
wl,in

uCc

(8)

which yields ml,eq =
pr,top,eq

pr,top,eq+bGLR
m∗

l,r
, where b =

ρlRT

M
and

GLR =
wg,in

wl,in
. Eventually, this yields the following expression

of the bottom hole pressure

pr,bh,eq = ps +
wl,in

Ccu
+

m∗
l,r

g sin θ

A

ps +
wl,in

Ccu

ps +
wl,in

Ccu
+
ρlRT

M

wg,in

wl,in

b) Tuning of the steady-state point: The steady-state

values of the upstream choke and bottom hole pressure are

the most important values to be fitted, because they are

the two variables that are usually measured with the best

accuracy. They both depend on the value of the production

choke opening u, which is why one should try to tune the

“equilibrium curve”, i.e. the values of the bottom hole or

production choke pressure for a set of values of u.

The upstream choke pressure at the equilibrium is given

by (8). This relation is affine in 1
u
, whereas it is traditionally

affine in 1
u2 in the literature (see Section V-A). For this

reason, we can only try to approximate the steady-state

behavior away from u = 0. Figure 7 shows the comparison

between our steady-state model and the one obtained with

the reference model from OLGA.
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Besides, ps being known with a good accuracy, one should

choose either wl,in or Cc to tune this value and make it match

the given data. One should notice that wl,in is the steady-state

value of the outflow of liquid through the production choke,

and that it is known up to the accuracy of the measurements

of that flow (its range is usually known). One should also

notice that, given the expression of pr,bh,eq, once pc,eq has

been chosen, there is no additional parameter available to

tune the equilibrium value of the bottom hole pressure. This

issue is discussed in Section V-C.

B. Occurrence of instability

In order to study the stability of the system around the

equilibrium point, one can compute the Jacobian matrix and

its eigenvalues. As is shown in Section III for the reduced

model, the system oscillates when one of these eigenvalues

is located in the right-half plane, and is stable otherwise.

Unfortunately, this fact cannot be shown rigorously for the

complete three-dimensional system as there does not exist

any equivalent to the Poincaré-Bendixson theorem. Yet, the

behavior (as observed on simulations) of the complete system

is the same: when the equilibrium point is stable, it is locally

attractive, conversely the system reaches a limit cycle when

the equilibrium is unstable.

1) Matching (choke opening) bifurcation point: When

increasing the opening of the production choke, we observe

that the system switches from a stable behavior to a slugging

behavior. This can also be seen by plotting the eigenvalues

of the system against the choke opening, and noticing that

they cross the imaginary axis for a certain value of the choke

opening as shown in Figure 8.
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Fig. 8. Locus of the eigenvalues when decreasing u

This phenomenon is well-known by the petroleum engi-

neers, who observed that the slugging could be suppressed

by choking down the riser, which, unfortunately, also reduces

the production rate. Yet, the value of the choke opening for

which the system stops slugging, i.e. the bifurcation point,

can be tuned.

To correctly fit the value of that point, one should write

the Routh stability criterion and solve it for the parameter to

tune so that the bifurcation point of the model and that of

the real system coincide. Unfortunately, the criterion does not

take the form of a tractable expression, and the bifurcation

point has to be set through iterative numerical methods, by

picking one parameter to tune and finding numerically its

optimal value (i.e. the one that gives the best value of u at

which instability occurs).

2) Matching frequency of oscillations: The frequency of

the oscillations at the bifurcation point is given by the

imaginary part of the eigenvalues of the Jacobian matrix,

because the oscillations are purely linear at that point. In

details, one can numerically tune a single parameter to act on

the imaginary part of the eigenvalues and tune the frequency.

This only allows us to tune the frequency for a given choke

opening, and the frequency may differ for other values of u.

V. L      

To maximize the model ability to reproduce the behavior

of real fields, several enhancements (by means of model

refinements) can be considered. Each of them has a cost

which is now briefly discussed.

A. Nonlinear valve equations

The assumption that the outflow wout is linear with respect

to the pressure drop over the choke is debatable. Indeed, the

valve equations are traditionnaly of the form

wout = C
√

ρmix∆p (9)

where ρmix is the mixture density. This form is known to

be appropriate in the cases of monophasic flow, but no such

general formula can be found in the literature for multiphasic

flow. The assumption of a linear relation was made here to

simplify the analysis. Still, it is possible to replace it with

a more general expression without compromising the tuning

possibilities, for example by using a relation of the form

wout = C (ρ∆p)1/n

with n ≥ 1. Even though such equation increases the

generality to the model, it also requires a manual tuning on n

which we would like to avoid. Yet, it reveals handy in some

cases, especially when studying field data.

B. Non constant inflows

In the current model, the inflows wl,in and wg,in are

assumed constant. We know that this is not the case in real

fields, but the assumption is considered for two reasons. First,

the model, contrary to many others, does not need a reservoir

model to reproduce slugging. Secondly, there is, up to our

knowledge, no simple model of reservoir that gives good

results compared to real-world data.

The main effect of considering constant inflows is that the

steady-state values of the outflows remains unchanged when

the system slugs or not. This is inconsistent with reality,

where the outflows are lower in slugging mode. Therefore,

one can investigate the addition of a productivity index (PI)

type of model reservoir. This will surely complicate the

analysis (in particular the computation of the steady-state)

and therefore reduce the tuning possibilities.
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C. Steady-state bottom hole pressure

As is, the steady-state bottom hole pressure is given by

pr,bh,eq = ps +
wl,in

Ccu
+

m∗
l,r

g sin θ

A

ps +
wl,in

Ccu

ps +
wl,in

Ccu
+
ρlRT

M

wg,in

wl,in

The Cc parameter is already used to tune the upstream choke

pressure, and the range of the wl,in and wg,in parameters is

given by measurements. The other parameters being fixed,

this means we have very few margin to tune the value of the

bottom hole pressure. This problem turns out to be important

when studying real field data, where the gravity pressure drop

in the riser plays an important role.

To address this issue, it is possible to assume that there is

a still mass of liquid that remains constant but impacts on

the system near the bottom hole and increases the pressure

there. This point is currently under investigation.

VI. C

We have presented a model for slugging flow in risers,

which can be applied to a wide class of geometries, including

purely vertical risers or systems with a low-point. We have

shown that this system could be tuned to reproduce the

behavior of an experimental rig with a good accuracy. The

improvements of Section V seem necessary to reproduce the

oscillation of real wells, while our preliminary simulations

are promising. We will now aim at designing an observer for

this model. Two directions are under investigation: the design

of a nonlinear observer in the classic sense, for example

with a Lyapunov analysis based on the proposed reduced

model, and the design of a frequency tracking and phase

locking system on field measurements. The long-term goal

is, of course, to design a control law that would stabilize

the system at high production choke opening values, but the

quality of the model and its ability to fit real-scale risers has

first to be more precisely assessed.

R

[1] E. F. Blick, P. Enga, and P.-C. Lin, “Stability analysis of flowing oil
wells and gas-lift wells,” SPE Production Engineering, vol. 3, No 4,
pp. 508–514, 1986.

[2] G. O. Eikrem, B. Foss, L. Imsland, B. Hu, and M. Golan, “Stabilization
of gas lifted wells,” Proceedings of the 15th IFAC World Congress,
vol. 15, Part 1, 2002.

[3] M. Dalsmo, E. Halvorsen, and O. Slupphaug, “Active feedback control
of unstable wells at the brage field,” SPE Annual Technical Conference,
2002.

[4] Scandpower, OLGA c©2000 User’s Manual. Scandpower, 2004.

[5] D. Ferre, V. Bouvier, and C. Pauchon, TACITE Physical Model

Description Manual. Rapport IFP, 1995.

[6] A. E. Dukler and M. G. Hubbard, “A model for gas-liquid slug flow
in horizontal and near horizontal tubes,” Industrial & Engineering

Chemistry Fundamentals, vol. 14, no. 4, pp. 337–347, 1975.

[7] Y. Taitel, “Stability of severe slugging,” International Journal of

Multiphase Flow, vol. 12, no. 2, pp. 203 – 217, 1986.

[8] Y. Taitel and D. Barnea, “Two-phase slug flow,” Advances in Heat

Transfer, vol. 20, pp. 83 – 132, 1990.

[9] A. M. Ansari, U. Sylvester, O. Shoham, and U. Brill, “A comprehen-
sive mechanistic model for upward two-phase flow in wellbores.” SPE

Annual Technical Conference, 1990.

[10] G.-O. Kaasa, “Attenuation of slugging in unstable oil by nonlinear
control,” IFAC, 2008.

Variable Description Unit

wg,in Mass flow rate of gas kg.s−1

entering the riser

wl,in Mass flow rate of liquid kg.s−1

entering the riser

wg Mass flow rate of gas kg.s−1

through the virtual choke

wg,out Mass flow rate of gas kg.s−1

coming out of the riser

wl,out Mass flow rate of liquid kg.s−1

coming out of the riser

mg,eb Mass of gas in kg

the elongated bubble

mg,r Mass of gas in the riser kg

ml,r Mass of liquid in the riser kg

peb Pressure in the elongated bubble Pa

pr,bh Bottom hole pressure in the riser Pa

pr,top Pressure at the top of the riser Pa

ps Separator pressure Pa

Veb Volume of the elongated bubble m3

Vr Volume of the riser m3

A Section of the pipe m2

θ Mean inclination of the riser rad

Cc Production valve constant m−2.s

Cg Virtual valve constant m−2.s

ρl Liquid density kg.m−3

M Molar mass of the gas kg.mol−1

T Temperature in the riser K

R Ideal gas constant J.mol−1.K−1

g Standard gravity constant m.s−2

b
ρlRT

M
Pa

α
CgRT

MVeb
s−1

β −
gk1 sin θ

A
Cg s−1

γ − b
k1

Cg +
gk2 sin θ

A
Cg kg.s−1

δ −
wl,in pc,eq

b
kg.s−1

c −
k2
k1
=

m∗
l,r

pc,eq

b
kg

TABLE I

N

[11] E. Storkaas, “Control solutions to avoid slug flow in pipeline-riser
systems,” Ph.D. dissertation, Norwegian University of Science and
Technology, 2005.
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A

A. Basin of attraction

As mentioned in III-C.2, the basin of attraction of the point

of system (4)-(5) can be estimated. In the open set D+ ⊂ D

where the max functions are strictly positive, the system can

be rewritten as

˙̃x1 = −αx̃1 − βx̃2

˙̃x2 = αx̃1 + βx̃2 − ρ(x̃2)x̃2

where x̃1 = x1 − x̄1, x̃2 = x2 − x̄2 and ρ(x̃2) =
wg,in+δ

c−x̄2−x̃2
. This

system will now be our system of interest. We denote D̃+ the

set corresponding to D+, centered around the equilibrium in

the (x̃2, X̃) coordinates. Given the result of Lemma 3.2, we

have, for any trajectory starting in D̃+

0 <
wg,in + δ

c − x∗
2

= ρmin < ρ(x̃2(t)) < ρmax =
wg,in + δ

c
(10)

Following the approach of [21], we put the system into the

following form, by replacing x̃1 with a new variable X̃ =

x̃1 + x̃2
(

˙̃x2

˙̃X

)

=

(

A(x̃2) α

−ρ(x̃2) 0

) (

x̃2

X̃

)

(11)

where A(x̃2) = −α + β − ρ(x̃2). Consider the candi-

date Lyapunov function (7), written in the (x̃2, X̃) coordi-

nates V(x̃2, X̃) = 1
2

(

x̃2

X̃

)T

R(t)

(

x̃2

X̃

)

where R(x̃2, X̃) =
(

P(x̃2) 0

0 1

)

and P(x̃2) =
ρ(x̃2(t))

α
. Equation (10) shows

that V(x̃2, X̃) = 1
2

(

ρ(x̃2)

α
x̃2

2
+ X̃2

)

is positive definite. Its time

derivative along a trajectory of the system starting in D̃+ is

V̇ =
1

2
Ṗ(x̃2)x̃2

2 + P(x̃2)A(x̃2)x̃2
2

V̇ =
ρ(x̃2)

2α

[(

1 +
ρ(x̃2)

ρ(0)

)

A(x̃2) +
ρ(x̃2)

wg,in + δ
αX

]

x̃2
2

a) Negativeness of V̇: We now seek a sufficient geo-

metric condition on (x̃2, X) to guarantee the negativeness of

V̇ , i.e. we wish to determine a set Γ in D̃+ containing the

origin (x̃2, X̃) = (0, 0), in which V̇(x̃2, X̃) is negative. We

will then build an invariant set K inside Γ, such that every

trajectory starting in K will converge to the origin. More

precisely, it is possible to construct a family of such sets Γ,

which we denote Γη where η is a parameter to be chosen

within a bounded interval. The construction is as follows.

For any given η > 0, we first seek a condition on x̃2 so that

A(x̃2) < −η (12)

To include the case of the equilibrium point x̃2 = 0, η must

be taken sufficiently small. Precisely, one must have

A(0) = −α + β −
1

c

(wg,in + δ)
2

δ
< −η (13)

which is always consistent with the previous condition η >

0 as it matches exactly the linear stability condition (6).

Further, a sufficient condition such that (12) holds can be

easily determined. Two cases must be considered. If β−α ≤

0, a right choice of η yields an absence of restriction on x̃2.

Indeed, in this case, taking 0 < η < α − β + ρmin yields, for

all x̃2 ∈ D̃+, A(x̃2) ≤ −η < 0. Otherwise, if β − α > 0, then

A(x̃2) is negative under the condition

x̃2 > (c − x̄2)

(

−α + β − ρ(0) + η

−α + β + η

)

where η can be freely chosen in the open interval (0,−A(0)).

This condition defines a half-plane for (x̃2, X̃) which is now

noted Γ
η

1
. We now seek a sufficient condition for V̇ to be

negative in Γ
η

1
, that is

α
ρ(x̃2)

wg,in + δ
X̃ +

(

1 +
ρ(x̃2)

ρ(0)

)

A(x̃2) < 0

A sufficient condition is X̃ <
1+
ρmin
ρ(0)

α
ρmax

wg,in+δ

η which can be rewritten

as

X̃ <
cη

α

(

1 +
c − x̄2

c − x∗
2

)

(14)

This condition defines another half-plane which we note Γ
η

2
.

Gathering the previous inequalities, we have, for any η > 0

satisfying (13)

∀(x̃2, X̃) ∈ Γη
de f
= D̃+ ∩ Γ

η

1
∩ Γ

η

2
V̇(x̃2, X̃) < 0 (15)

b) Construction of an invariant set: For all η, Γη

contains the origin. Indeed, Γ
η

1
contains it thanks to (13),

Γ
η

2
contains it because the upper bound on X̃ in (14) is

positive, and D̃+ contains it also. Finally, Γη is open as it

is the intersection of three open sets containing the origin,

therefore it contains a neighborhood of the origin. We take

σ = min(x̃2,X̃)∈∂Γη V(x̃2, X̃), and k < σ. We define K as

K =
{

(x̃2, X̃) ∈ R2 | V(x̃2, X̃) ≤ k
}

(16)

We claim that K is a positively invariant compact set. First,

notice that K ⊂
o

Γ
η. Indeed, K ⊂ Γη because if K\Γη , ∅, then

∃(x̃2, X̃) ∈ K ∩ ∂Γη. This would give k ≥ V(x̃2, X̃) ≥ σ > k

which is impossible. This also shows that K ∩ ∂Γη = ∅.

Therefore, K lies entirely in the interior of Γη.

Now, consider a trajectory starting in K. Suppose that

there exists t1 ≥ 0 such that (x̃2(t1), X̃(t1)) < K. Then, the

trajectories being continuous, there also exists t2 ≥ 0 such

that (x̃2(t2), X̃(t2)) ∈ Γη\K, and (x̃2(t), X̃(t)) ∈ Γη, ∀0 ≤ t ≤ t2.

Then, one would have V(x̃2(t2), X̃(t2)) > k ≥ V(x̃2(0), X̃(0))

which is impossible because V̇ < 0 in Γη. Therefore, every

trajectory starting in K remains in K for all future times.

c) Asymptotic stability: We now consider system (11)

on the set K defined by (16) and apply Lasalle’s invari-

ance principle with V as a Lyapunov function. Indeed, K

is a non-empty compact set, and V̇(x̃2, X̃) < 0 for all

(x̃2, X̃) ∈ K. Therefore, any trajectory starting in K converges

to the largest invariant set included in
{

x | V̇(x) = 0
}

=
{

(x̃2, X̃) | x̃2 = 0
}

. Because α > 0, (11) shows that this set

reduces to the origin. This shows that K is included in the

basin of attraction of the origin.
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