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Abstract— We address the problem of three-axis sensor cali-
bration. Our focus is on magnetometers. Usual errors (misalign-
ment, non-orthogonality, scale factors, biases) are accounted for.
We consider a method where no specific calibration hardware is
required. We solely use the fact that the norm of the sensed field
must remain constant irrespective of the sensors orientation.
The proposed algorithm is iterative. Its convergence is studied.
Experiments conducted with MEMS sensors (magnetometers)
stress the relevance of the approach.

INTRODUCTION

Numerous military and civilian control applications re-

quire high accuracy position, speed, and attitude estimations

of a solid body. Examples range from Unmanned Air Vehi-

cles (UAV), Unmanned Ground Vehicles (UGV), full-sized

submarines, civil engineering positioning devices, to name

a few. A widely considered solution is to use embedded

Inertial Measurement Units (IMU). Accelerometers, gyro-

scopes signals can be used to derive position and orientation

information through a double integration process [11], [7].

This approach requires very high precision IMUs and well

calibrated sensors. An important challenge appears when

cost, space or weight constraints become stringent.

The recent progress in very low cost (less than 300 USD),

low weight (less than 100 g) and low size (less than 3 cm2)

IMUs have spurred a broad interest in the development of

IMU-based positioning technologies. These Micro-Electro-

Mechanical Systems (MEMS) IMUs appear to have quickly

increasing capabilities. Several manufacturers are announc-

ing new models under 4,000 USD capable of less than

20 deg/hr angular errors.

Yet, there still does not exist any reported experiment

proposing to estimate the position from such a low cost

IMU. In the literature, these IMUs are only used for ori-

entation (attitude) estimation (see e.g. [4], [12] or [3] for

an application to the control of mini-UAVs in closed loop).

Some tentative work (using higher-end IMUs) address the

problem of velocities estimation. In these cases, the speed

information is obtained from a GPS receiver using the

Doppler effect (see [11] for details on the quality of the

obtained measurements information) or from odometers (in
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the case of ground vehicles). Model based approaches permit

to reduce the dependence on GPS (see [15]).

For indoor pedestrian applications, GPS is almost totally

unavailable. Recently, a new approach called distributed-

magnetic-inertial navigation has been proposed [16]. It re-

lies solely on MEMS magnetometers, accelerometers and

gyroscopes and takes advantage of the unknown magnetic

field disturbances usually observed indoors to estimate drift

in velocities. This disturbances are evaluated using a three-

dimensional array of magnetometers. In details, an exper-

imental test bed was constructed that integrates an IMU

consisting of one three-axis accelerometer, one three-axis

gyroscope and one three-axis magnetometer and a set of eight

spatially distributed three-axis magnetometers. This complex

measurement system can produce meaningful data if and

only if all the sensors are well-calibrated and all the sampling

times are precisely known and accounted for (this last point

is discussed in [6]). Calibration of such three axis sensors

measuring a constant vector field is the subject of this paper.

In classic inertial navigation, there exist various methods

for three-axis sensors calibration. Most of them have an

important drawback in common. They require expansive

tools to acquire the data and compare them against a fixed

reference, and, quite often, a high degree of expertise to

process the data. Usually (see e.g. [5]), IMUs calibration

is achieved using a well-instrumented mechanical platform

(called calibration table) whose varying orientation is pre-

cisely measured. The platform is rotated to various precisely

controlled orientations which serve as comparisons against

the orientations determined from the IMU sensors. The

rotational velocities are precisely controlled as well. Mag-

netometers calibration is usually performed using a similar

method in magnetically shielded facilities to provide a known

uniform field (see e.g. [13]). Similarly, measurements are

then performed with precise knowledge of sensors orienta-

tion.

The recent development of micro-electro mechanical sys-

tems (MEMS) and other low-cost sensors has led to a

paradox. Due to their relatively low quality, these low-cost

sensors are in great need of a calibration procedure (much

more than higher-end sensors), but the cost of the traditional

calibration procedures may exceeds by many times the cost

of developing and constructing the sensors themselves, and

calibration may change over time. Moreover, as the cost of

the sensors are decreasing, their use is spreading. This yields

a great interest in developing new "simple but effective"

calibration procedures that do not require a high degree of

expertise nor an expensive hardware to be put into practice.

Lately, a new paradigm for such sensors calibration has
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emerged. Some procedures and algorithm have been pro-

posed (see [14], [8]) and a few for magnetometers calibration

(see [10], [9]). They all rely on the fact that the force field un-

der consideration (the gravitational field for accelerometers

and the Earth magnetic field for magnetometers) corresponds

to a sensed vector having, in theory, a constant and known

norm. The strategy is to identify and remove the measure-

ment errors. No specific calibration hardware is required.

The measurement errors are represented by constant co-

efficients of a (vector) affine transformation. The calibra-

tion problem is to find inverse affine transformations to

maximize a performance index. This index involves the

norm of the reconstructed data and a comparison against

its theoretical (scalar) constant value. In practice, the usual

algorithm (see [10], [9]) proceeds in two steps. First, an

exact linearization is performed by means of a change of

variables. Then, an inverse transformation is analytically (or

numerically) performed to obtain the desired variables. Inter-

estingly, the linearizing change of coordinates is not unique.

Several choices are possible and all yield some distorsion

in the cost function. For cases where the sensed field is

possibly substantially distorted (such as the above mentioned

indoor applications), irrelevant solutions can appear. They

may correspond to cases where the cost function is also

substantially distorted.

In this paper we propose to go back to an original

nonlinear formulation, close in spirit with those considered

in the calibration-table free methods (see [10], [9], [14],

[8]), and to treat it in an iterative way. This yields an

algorithm with interesting mathematical properties, which is

also very efficient in practice. More specifically, we address

the case of magnetometers which is of particular interest

for the distributed magnetometry applications mentioned

above, but the method has also been applied successfully

to accelerometers.

The article is organized as follows. In Section I, the

calibration problem is defined along with the mathematical

model used. The main magnetic disturbances (hard-iron,

soft-iron) are briefly recalled and modeled along with the

classic scale factors and misalignments. Notations required

for the study of the calibration algorithm are presented. We

also briefly present the distributed magnetometry test bed

experiments are conducted on. In Section II, the state-of-

the-art non-linear two-steps estimation algorithm and the

proposed method are described for sake of further compar-

isons. In Section III, properties of the proposed algorithm are

established. Experimental results are presented in Section IV.

Finally, we conclude and sketch future directions.

I. CALIBRATION PROBLEM

In this section, we expose the calibration problem for

a three-axis sensor. We present an error model and the

notations employed throughout the paper.

A. Notations

Consider a three-axis sensor. Its sampled measurements

are denoted yi (3×1 vector), where i stands for the sampling

index, whereas the actual value of the sensed field is denoted

Yi (3× 1 vector). These measurements are collected in y =
(yi)i=1,...N , where N is the total number of samples.

In order to improve the accuracy of raw sensor data y,

especially when dealing with low-cost sensors, mathematical

models must be built to take into account the various sources

of errors. Some, such as scale-factors, misalignment and the

resulting cross-coupling of axes, apply to all kinds of sensors

(gyroscopes, accelerometers, ...) while some others only

apply to a particular class of sensor (see below for the case of

magnetometers). To cover most cases of interest, we might

have simply considered a zero-bias vector �, scale-factors

represented by a diagonal matrix �, and misalignments terms

(accounting for harmonization errors only) represented by a

skew-symmetric matrix R

Yi = �Ryi + � with � = [�1 �2 �3]
T

R =

⎡

⎣

1  −�
− 1 �
� −� 1

⎤

⎦� =

⎡

⎣

�1

�2

�3

⎤

⎦

However, due to the use of low cost sensors, substantial mis-

alignments and errors must be considered, and, additionally,

significant non-orthogonality between axes may arise. There-

fore, no possibly simplifying assumption on the magnitude

of the errors is made. All these factors are gathered into

a general matrix A, and a zero-bias vector B. With these

notations,

Yi = Ayi +B (1)

In the case of magnetometers which is of particular

interest here, the specific sources of errors are mainly hard

and soft iron errors (see [10], [13]). Hard iron errors are

induced by permanent unwanted fields. They are generated

by ferromagnetic materials attached to the magnetometer

frame (typically the structure or the equipment installed near

the magnetometer, or even non-varying current in close-by

wires). They result in a bias. Soft iron errors are induced

by materials that generate magnetic fields in response to

externally applied magnetic fields. The model presented in

this paper takes only into account the proportionality of

this error to the applied external field. The constant of

proportionality is referred to as the magnetic susceptibility

of the material considered. Soft iron errors generally present

a hysteresis which is often small enough to be neglected.

Without any disturbances on the sensed field, the only

information available is that the actual norm of the sensed

field is constant during all the measurement acquisition

phase. This constant may be chosen equal to 1 without

any loss of generality1. The calibration problem consists in

determining A and B from the measurements y knowing

that the actual norm of the sensed field Yi is 1 for all

samples i = 1, ..., N .

1This standpoint is different from numerous approaches found in the
literature [2] where the norm of the sensed field is obtained from dependable
look-up tables. No such information is available indoor.
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Fig. 1. Norm of the magnetic field before calibration for two distinct
magnetometers (one HMR2300 from HoneywellⓇand one included in the
MicrostrainⓇIMU). The errors are due to the sensor ill-calibration.

B. Obtaining experimental data

Measurements are obtained while the three-axis sensor

(magnetometer) is oriented in every possible direction. The

motion is usually relatively slow, but this is not a strict

requirement. Interestingly, no accurate measurements of the

sensor orientation is made during this data acquisition. This

makes the classically considered calibration table useless

in this data collection step. The Earth magnetic field and

the hard and soft iron errors are assumed constant during

the data collection process. Similarly, for accelerometers

calibration, the gravitational field would be also considered

constant. To avoid any temperature drift, the sensors have to

be warmed up before data acquisition. This warm-up phase

last approximatively 1 min. The data acquisition phase lasts

approximatively 25 min and a typical number of N = 105

samples are acquired.

C. Experimental testbed

The experimental testbed used here is described in [6].

In summary, nine magnetometers (e.g. HMR2300 from

HoneywellⓇ) are attached to a board which can simulta-

neously rotate and translate in 3D. A MicrostrainⓇIMU is

located in the center of the device. A power-PC microcon-

troller (MPC555 from MotorolaⓇ) is used to retrieve the

data from all sensors and associate a time-stamp to each

measurement for sake of synchronization. The measurement

from all the sensors are gathered along with their timestamps

in a single message sent through a serial port to a remote

computer for post-treatment. Before the calibration process

is achieved, the norm of the sensed magnetic fields varies

significantly (see Figure 1 where the norms of the N samples

are plotted).

II. CALIBRATION METHODS

A. Non-linear, two-step estimation algorithm

Here, we briefly recall the two-step calibration algorithm

originally proposed in [10], [9]. As the norm of the sensed

field is assumed constant ∥Yi∥2 = 1, for all i = 1, ..., N ,

the sensed field vectors yi should all be located on the

unit sphere. Due to errors, this is not the case, as already

discussed. It is desired to find A and B such that the

values A (yi −B) are as close as possible to this sphere.

In details, A and B have to yield a fair approximation of

∥A (yi −B)∥2 = 1 for every sample i = 1, ..., N . To this

end, A and B are defined as the minimizers of the following

cost function (2)

g (A,B, y) =

N
∑

i=1

(

∥A (yi −B)∥2 − 1
)2

(2)

Once expanded, it becomes

g (A,B, y) =
N
∑

i=1

(

yTi A
TAyi − 2BTATAyi + (BTATAB − 1)

)2

Here, A is sought after under the form of an upper triangular

matrix, implicitly leaving out any rotation matrix which

leaves the cost g invariant. The parameters to be determined

through the minimization procedure are the components of

A and B, i.e. 9 parameters. The cost function (2) is quartic

in these parameters. Yet, as proposed in [10], [9], a two-step

estimation using a least squares method can be performed.

Note

A =

⎛

⎝

a11 a12 a13
0 a22 a23
0 0 a33

⎞

⎠ , B =

⎛

⎝

b1
b2
b3

⎞

⎠

First, the following change of variables is performed
⎧











































⎨











































⎩

a =a211

b =a212 + a222

c =a213 + a223 + a233

d =2a11a12

e =2a12a13 + 2a22a23

f =2a11a13

g =− 2 (ab1 + db2 + fb3)

ℎ =− 2 (db1 + bb2 + eb3)

i =− 2 (fb1 + eb2 + cb3)

j =ab21 + bb22 + cb23 + 2db1b2

+ 2eb2b3 + 2fb1b3 − 1

These last 10 variables are normalized to 9 variables

by considering the 9-dimensional vector of ratios r =
(a/b, c/b, d/b, e/b, f/b, g/b, ℎ/b, i/b, j/b). Then, a new op-

timization problem (3) is formulated. This new (quadratic)

problem is solved by a least-squares method. Finally, inverse

algebraic transformations permit to recover the 9 coefficients

of A and B from the 9 ratios. The optimization problem (3)

is not equivalent to the minimization of the original cost

function g in (2). The reason why is that, as appeared in

the introduction of the vector or ratios r, the (not unique)

normalization of the variables yielding the reduction to a
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min
r

N
∑

i=1

∥

∥

∥

∥

y2i1
y2i2

⋅ a
b
+
y2i3
y2i2

⋅ c
b
+
yi1 ⋅ yi2
y2i2

⋅ d
b
+
yi2 ⋅ yi3
y2i2

⋅ e
b
+
yi3 ⋅ yi1
y2i2

⋅ f
b
+
yi1
y2i2

⋅ g
b
+
yi2
y2i2

⋅ ℎ
b
+
yi3
y2i2

⋅ i
b
+

1

y2i2
⋅ j
b
− 1

∥

∥

∥

∥

2

(3)
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Fig. 2. Norm of the magnetic field calibrated by the non-linear, two-step
algorithm presented in Section II-A.

Magneto IMU Raw data Calibrated data

Mean 5.099327e− 1 5.139927e− 1
Deviation 1.077045e− 2 1.223969e− 3
Samples 120000 120000
Time - approx.1.2 s

HMR2300 Raw data Calibrated data

Mean 5.090592e− 1 5.139977e− 1
Deviation 9.846039e− 3 6.878812e− 4
Samples 120000 120000
Time - approx.1.2 s

Fig. 3. Raw data and calibrated data (through the 2-step algorithm) for
two magnetometers.

classic least-squares problem, has introduced a non uniform

weighting of the various measurements (see Equation 3).

In theory, it would have been possible to consider any

of the 9 variables a, b, ..., j to normalize the problem.

Similarly, this would have led to nonequivalent optimization

problems though. The original optimization problem with

cost function (2) has thus been “distorted”. In some cases

this can be a problem. This point is illustrated later in this

paper (see Section IV).

Results: Figure 2 presents results obtained with this

algorithm applied on the raw data shown in Figure 1.

The statistics of both raw and calibrated data sets of a

magnetometer HMR2300 and of the magnetometer of the

IMU are presented in Figure 3. The reported time is the

time elapsed during the computation of the algorithm on a

Intel Core 2 Duo 2.6GHz.

B. Proposed algorithm

Instead of considering linearizing changes of variables,

we propose to solve an optimization problem by means of

iterations of least square problems and successive partial

calibration of data.

Consider a step in the iterations, say the ktℎ. Following

the idea of [10], [9], we wish to account for the fact that

the sensed field is constant. Consider the N data yi,k,

i = 1, ..., N , which are initialized at step k = 0 with the

measurements yi. First, we formulate the following cost to

be minimized

ℎ(A,B, k) =

N
∑

i=1

∥

∥

∥

∥

(Ayi,k +B)− yi,k
∥yi,k∥

∥

∥

∥

∥

2

(4)

This function is quadratic with respect to the coefficients

of A and B. In view of algorithmic minimization, this is an

advantage over the cost in (2) which is quartic with respect to

these same variables. We note the uniquely defined solution

(Ak+1, Bk+1) = argmin
A,B

ℎ(A,B, k)

which can be obtained by a classic least-squares approach.

Then, we use these matrices to update the data as follows

yi,k+1 = Ak+1yi,k +Bk+1 (5)

After k such iterations, a matrix Ãk and a vector B̃k are

obtained recursively by

Ãk = AkÃk−1

B̃k = AkB̃k−1 +Bk

They relate yi,k to the raw measurements yi. In details,

yi,k = Ãkyi + B̃k (6)

We can now summarize the method

Algorithm 1 (Proposed algorithm):

1) Initialize k = 0, yi,0 = yi for all i = 1, ..., N
2) Compute (Ak+1, Bk+1) = argminA,B ℎ(A,B, k) by a

least-squares method (where h is given in Equation 4)

3) Update the data yi,k+1 = Ak+1yi,k +Bk+1

4) Increase k by 1 and return to step 2

A limited number K of iterations is usually considered. Then

the data yi,K , i = 1, ..., N are the "calibrated data".

In words, this algorithm solves a sequence of least square

problems in which the input data are iteratively calibrated

using the successively determined calibration matrices and

vectors.

In this method, a very natural cost function (4) is formu-

lated. It is close in spirit to (2), but can be handled differ-

ently. As will now appear, this also brings some interesting

properties.
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III. PROPERTIES OF THE PROPOSED ALGORITHM

A. Calibration improvement and alignment

We now prove two properties of the proposed algorithm 1.

For sake of conciseness, we note yk = (yi,k)i=1,...,N .

Proposition 1 (calibration improvement): The data gener-

ated by the Algorithm 1 satisfy the following decreasingness

property:

f(yk+1) ≤ f(yk)

where

f(yk) =

N
∑

i=1

(1− ∥yi,k∥)2

Further, (f(yk))k∈ℕ decreases and is positive, so it converges

to a limit ℓ ≥ 0.

This property shows that, in the sense detailed by the

function f , the data are better and better calibrated as the

iterations are pursued.

Proof: By construction, Ak and Bk are such that

ℎ(Ak, Bk, k) is minimal. In particular, one can compare them

against the identity matrix and the zero vector

ℎ(Ak+1, Bk+1, k) ≤ ℎ(I3, 0, k)

Replacing Ak+1yi,k +Bk+1 by yi,k+1 yields

N
∑

i=1

∥

∥

∥

∥

yi,k − yi,k
∥yi,k∥

∥

∥

∥

∥

2

≥
N
∑

i=1

∥

∥

∥

∥

yi,k+1 −
yi,k
∥yi,k∥

∥

∥

∥

∥

2

(7)

N
∑

i=1

(

yi,k ⋅
(

1− 1

∥yi,k∥

))2

≥
N
∑

i=1

∥

∥

∥

∥

yi,k+1 −
yi,k
∥yi,k∥

∥

∥

∥

∥

2

which gives, by triangle inequality on the right term,

N
∑

i=1

(1− ∥yi,k∥)2 ≥
N
∑

i=1

(

∥yi,k+1∥ −
∥

∥

∥

∥

yi,k
∥yi,k∥

∥

∥

∥

∥

)2

(8)

Finally,

f(yk) ≥ f(yk+1)

which concludes the proof.

Proposition 2 (alignment): The data generated by Algo-

rithm 1 satisfy the following alignment property

lim
k→+∞

(

yi,k+1

∥yi,k+1∥
− yi,k

∥yi,k∥

)

= 0

This property shows that, as the iterations are pursued, the

calibrated data make little progress in orientation.

Proof: First, we perform a preliminary decomposition

of the objective function ℎ

ℎ(k) ≜ℎ(Ak+1, Bk+1, k)

=

N
∑

i=1

(

∥yi,k+1∥2 + 1− 2
⟨yi,k+1∣yi,k⟩

∥yi,k∥

)

which can also be written under the form

ℎ(k) = f(yk+1) +

N
∑

i=1

(

2 ∥yi,k+1∥ − 2
⟨yi,k+1∣yi,k⟩

∥yi,k∥

)

(9)

= f(yk+1) + 2

N
∑

i=1

∥yi,k+1∥
(

1−
〈

yi,k+1

∥yi,k+1∥
∣ yi,k∥yi,k∥

〉)

(10)

Consider again (7) and (8), one obtains

f(yk) ≥ ℎ(k) ≥ f(yk+1)

From Proposition 1, we know that f(yk) converges to a

limit ℓ as k → +∞. Therefore, from the preceding inequal-

ities, we conclude that ℎ(k) converges to the same limit.

Then, from Equation 9, we deduce

lim
k→+∞

(

N
∑

i=1

∥yi,k+1∥
(

1−
〈

yi,k+1

∥yi,k+1∥
∣ yi,k∥yi,k∥

〉)

)

= 0

(11)

All the terms under the
∑

sign are positive or zero, therefore

we conclude that, ∀i = 1, ..., N ,

lim
k→+∞

(

∥yi,k+1∥
(

1−
〈

yi,k+1

∥yi,k+1∥
∣ yi,k∥yi,k∥

〉))

= 0

(12)

lim
k→+∞

(

∥yi,k+1∥
〈

yi,k+1

∥yi,k+1∥
∣
(

yi,k+1

∥yi,k+1∥
− yi,k

∥yi,k∥

)〉)

= 0

(13)

Now, to conclude, note

ui,k =
yi,k+1

∥yi,k+1∥
− yi,k

∥yi,k∥
and decompose it under the form

ui,k = (1− �i,k)
yi,k+1

∥yi,k+1∥
− �i,k

y⊥i,k+1
∥

∥

∥y⊥i,k+1

∥

∥

∥

where y⊥i,k+1
is directly orthogonal to yi,k+1, and with

�2
i,k + �2

i,k = 1

We deduce from (13) that

lim
k→+∞

�i,k = 1, lim
k→+∞

�i,k = 0

Finally, this gives

lim
k→+∞

(

ui,k =
yi,k+1

∥yi,k+1∥
− yi,k

∥yi,k∥

)

= 0

which concludes the proof.

B. Illustrative example

To illustrate the presented algorithm, we use it on a

very small set of 12 planar data. Initially, they are all

lying on a sharp ellipse (plotted in red in Figure 4). This

scenario corresponds to strong scale factors, moderate bias,

and misalignment. The algorithm is run over 4 iterations.

Results are reported on top of each other in Figure 4. As

can be observed, the data are quickly calibrated, i. e. they

all get close to the unit circle within this small number of

iterations.
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Fig. 4. Evolution of the calibration over 4 iterations of the proposed
algorithm. Measurements are in red and the unit circle in blue. The four
iterations of the calibration algorithm are represented by black crosses.

C. A special case: 2 dimensional unbiased calibration prob-

lem

The previously presented propositions provide theoretical

insight into the progression of the algorithm along the itera-

tions: the data are better and better calibrated (Proposition 1),

and make few progress in rotation (Proposition 2). It is in

fact possible to go a little bit further in the analysis. Let

us now focus on a specific 2 dimensional case (i. e. where

the measurements are done in 2D), and further, let us make

the following simplifying assumptions. We consider that the

measurements constitute a closed and centered ellipse (i.e.

that there is a continuum of data, and that a preliminary

debiasing has been performed). The measurements are noted

y(�), � ∈ [0, 2�[, and the iteratively calibrated data are yk(�),
� ∈ [0, 2�[. Then, we assume that no misalignment is present

and consider only scale factors. Therefore, the measurements

satisfy

Y (�) = Ay(�)

where A is an unknown diagonal matrix. By analogy to

equation (4), the cost to be minimized at iteration k is

ℎ(A, k) =

∫ 2�

0

∥

∥

∥

∥

Ayk(�)−
yk(�)

∥yk(�)∥

∥

∥

∥

∥

d�

Note Ak+1 the solution of this minimization problem, i.e.

Ak+1 = arg min
A diagonal

ℎ(A, k)

Iteratively, the data are calibrated using yk+1(�) =
Ak+1yk(�). At step k, let us note the inverse calibration

equation

yk(�) =

(

�k 0
0 �k

)

Y (�)

With the notation

f(yk) =

∫ 2�

0

∣

∣

∣
1− ∥yk(�)∥2

∣

∣

∣
d�

a reasoning similar to the one in the proof of Proposition 2

directly yields

f(yk) ≥ ℎ(Ak+1, k) ≥ f(yk+1)

Further,

f(yk) = 2�

(

1 +
�2
k

2
+
�2
k

2

)

− 2

∫ 2�

0

∥y(�)∥ d�

= 2�

(

1 +
�2
k

2
+
�2
k

2

)

− 2P (�, �)

(14)

where P (�, �) is the perimeter of an ellipse having 1/�k

and 1/�k as semi-axis. We wish to show that the inverse

calibration matrix

(

�k 0
0 �k

)

tends to the identity as k

tends to infinity, i.e. that the proposed algorithm converges

to exact calibration of the data. Similarly to Proposition 1,

one can readily show that f decreases along the iterations

and goes to a limit ℓ ≥ 0. Using an estimate for (14), it is

possible to deduce convergence information on �k and �k.

To simplify the exposition, let us first consider that this limit

is ℓ = 0.

Consider in equation (14), f as a function of (�k, �k). It

can be proved that f has (1, 1) as unique local minimum (in

a rather large neighborhood) and that its value there is 0. To

prove that, one can simply use Peano’s approximation of the

perimeter of an ellipse [1] reproduced in (17). Accounting for

the approximation implied by this formula, one can compute

the following exact decomposition of f under the form

f(�k, �k) = f1(�k, �k) + f2(�k, �k)

where f2(�k, �k) is strictly positive away from �k = �k
and zero there, while f1, given in (18), is convex on the

considered domain [3/4 4/3]2 (its Hessian is given in (19)),

strictly positive away from (1, 1) and zero there. Therefore,

(1, 1) is the only zeroing point of f , and one can conclude

that (�k, �k) converges to (1, 1). This estimate reveals handy

in experimental results where ℓ can be evaluated numerically.

Now, let us extend the analysis to the case ℓ > 0. A local

expansion of f for (�, �) about (1, 1) yields the following

inequalities

(

�− 1 � − 1
)

⎛

⎝

3 1
1 3

⎞

⎠

⎛

⎝

�− 1
� − 1

⎞

⎠

16
≤ ℓ

ℓ ≤

(

�− 1 � − 1
)

⎛

⎝

3 1
1 3

⎞

⎠

⎛

⎝

�− 1
� − 1

⎞

⎠

4

and we deduce the estimation, where d is the distance of

(�, �) to (1, 1),
√
2

4
d ≤

√
ℓ ≤ d (15)

meaning that both �k and �k approach 1 as the square root

of ℓ approaches 0.
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Simulation parameters:
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Noise: uniform centered white noise

of amplitude in [−0.125; 0.125]

Distortion matrices: Y = Ay+ B
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⎠
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Fig. 6. Evolution of the standard error S over a few iterations of the
iterative algorithm proposed and comparison with the results obtained with
the 2-step algorithm

IV. EXPERIMENTAL RESULTS

Several experiments have been conducted using the hard-

ware presented in Section I-C. To evaluate the performance

of the algorithms, the standard error S is used.

S(y) =
1

N − 1
⋅

N
∑

i=1

(∥yi∥ − 1)
2

(16)

Table 5 shows some results obtained with simulated data

and with less disturbed real data from a magnetometer

(HMR2300 from HoneywellⓇ). It appears that the calibra-

tion process allows significant improvement compared to

the raw data. The standard error S used to evaluate the

various algorithms is better for the proposed iterative one.

When cross-coupling terms are small, on the one hand,

improvement brought by this algorithm get smaller, but, on

the other hand, fewer iterations are needed and computation

time is faster.

To underline the possibly erratic behavior of the 2-step

algorithm in extreme cases (see Section II-A ), we consider a

set of 1700 perfectly scaled unbiased 3D data, and introduce

a strong misalignment which is varied from 0 to 40. As can

be seen in Figure 7, when the misalignment term (one of

the upper triangular part of matrix A) reaches the values

of 20 (approximately), the 2-step algorithm ends up with

ill-calibrated data. Both the standard error and the mean

value are inconsistent with reality. Interestingly, the proposed

algorithm keeps working properly.

Finally, accuracy of the proposed method can be investi-

gated. By increasing the number of iterations, the accuracy

is enhanced. This point is visible in Figure 6. In this plot,

the log of the standard error is plotted for various numbers

of iterations, giving an idea of the rate of convergence. It

appears in the considered scenario (1700 simulated data with

matrix and bias reported in the figure), that the proposed

algorithm outperforms the 2-step method as soon as the

number of iterations is larger than 10.

0 10 20 30 40

-15

-10

-5

0

Standard error S

L
o
g
(S

)

0 10 20 30 40
0

5

10

15

Mean Interative algorithm

2-step algorithm

Fig. 7. Erratic behavior. A set of 1700 perfectly scaled unbiased 3D
data is considered, and a strong misalignment which is varies from 0 to
40 is introduced. Mean and standard error S are given for both the 2-step
algorithm (in red) and the proposed one (in blue).

V. CONCLUSION

In this paper, we have introduced a new algorithm for

calibrating three-axis sensors. This iterative method makes

a repeating use of least-squares algorithm. As has been

demonstrated, it proves very effective when treating large

sets of uncalibrated data. Certainly, the numerical efficiency

of the method can be improved upon, by reusing key

information from one iteration to the next for example. We

also believe that more theoretical results can be obtained.

Several points remains to be explored, in particular the

magnitude of the residual error seems to be possible to

estimate. Finally, an extension of the proposed algorithm is

currently considered. It aims at calibrating at once an array of

sensors by including corrections of the misalignment between

the sensors measuring the same force field. These are current

directions of future work.
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APPENDIX

Peano’s approximation of the perimeter of the ellipse is

always over-estimating the true value. Here is the approxi-

mation:

P (�, �) ≈ �

(

3

2
(�+ �)−

√

��

)

(17)

which yields to

f1(�, �) = 2�

(

1 +
�2

2
+
�2

2

)

− 2�

(

3

2
(�+ �)−

√

��

)

(18)

The hessian of f1 is the following one

∇2f1(�, �)

2�
=

(

1− �

4�
√
��

1

4
√
��

1

4
√
��

1− �

4�
√
��

)

(19)
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