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Abstract— We address the problem of position estimation for
a rigid body using an inertial measurement unit (IMU) and a set
of spatially distributed magnetometers. We take advantage of
the magnetic field disturbances usually observed indoors. This
is particularly relevant when GPS is unavailable (e.g. during
military operations in urban areas). We illustrate our technique
with several experimental results obtained with a Kalman filter.
We also present our testing bench which consists of low cost
sensors (IMU and magnetometers).

INTRODUCTION

Numerous military and civilian control applications re-
quire high accuracy position, speed, and attitude estima-
tions of a solid body. Examples range from Unmanned
Air Vehicles (UAV), Unmanned Ground Vehicles (UGV),
full-sized submarines, sub-sea civil engineering positioning
devices [10], to name a few. A widely considered solution
is to use embedded Inertial Measurement Units (IMU).
Accelerometers, gyroscopes (and possibly magnetometers)
signals can be used to derive position information through
a double integration process [5], [4]. Because of sensors
drifts, this approach requires very high precision IMUs Other
solutions need to be used when cost, space, or weight
constraints become stringent. A recent trend has been to
heavily rely on the well known Global Positioning system
(GPS) technology. has a limited availability (especially in
the context of military operations), its accuracy is (roughly
speaking) of 10 m of error. GPS is very poorly useable
between buildings in forests or indoor. The recent progress
in very low cost (less than 1,500 USD), low weight (less
than 100 g) and low size (less than 3 cm2) IMUs have
spurred a broad interest in the development of IMU-based
positioning technologies. These Micro-Electro-Mechanical
Systems (MEMS) IMUs appear to have quickly increasing
capabilities. Several manufacturers are announcing new mod-
els under 5,000 USD with gyroscopes capable of less than
20 deg/hr.

So far, there does not exist any reported experiment of
successful position estimation from such a low cost IMU.
In the literature, these IMUs are only used for attitude
estimation (see e.g. [3], [7] or [2] for an application to the
control of mini-UAVs in closed loop). Some tentative work
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Fig. 1. A typical platoon of soldiers in action as envisioned in the BOA
projet. c©F.Blanchard-BD Médias for Délégation Générale pour l’Armement
(DGA). A team leader keeps track of his soldiers thanks to real-time position
information reported on his arm held display.

(using higher-end IMUs) address the problem of velocities
estimation. In these cases, the speed information is obtained
from a GPS receiver using the Doppler effect (see [5] for
details on the quality of the obtained measurements infor-
mation) or from odometers (in the case of ground vehicles).
Our focus is on indoor missions involving humans. It is
desired to remotely estimate their positions. During prelim-
inary tests, it quickly appeared to us that, given the poor
knowledge of the body dynamics, it is impossible to get
a position error below 50 m from a low cost IMU (e.g.
a 3DMGX1 from Microstrainr) after a few minutes of
experiments. For the specific problem of pedestrian indoor
navigation, technical solutions exist in both academia [8],
and industry (e.g. Core Navigation Module by Vectronixr).
These methods do not rely on velocity inertial estimates,
but, rather, evaluate step lengths and walking pace. An
IMU is used to provide heading information, and to detect
stop and go sequences. Obtained results are good, provided
that the pedestrian is not walking side ways, and keeps a
regular step length. It is also required that the magnetic
field is not disturbed. High-end IMUs are usually much
too heavy for human-oriented applications. While the GPS
signal is poorly available indoor, experimental measurements
have shown that the magnetic field in a typical business
building is strongly disturbed (by the building structure,
electrical equipments and computers among others). For sake
of illustration, we report the variations of the magnetic field
norm inside a business building office in Figure 2.

Our claim is that these disturbances (which are assumed to
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Fig. 2. Variation of the magnetic field norm during a 2.4 m horizontal
displacement inside a business building office.

be stationary) can actually be used to improve the position
estimation. Our work is related to the approach advocated
in [6] for gravimetry aided navigation. Very importantly, our
approach does not rely on any a-priori magnetic map. It
simply uses Maxwell’s equation. In words, we note that, in
a disturbed magnetic field, it is possible to determine when
a solid body equipped with 4 magnetometers is moving. If it
moves, then the sensed magnetic fields must change in accor-
dance with Maxwell’s law. If the magnetic measurements do
not change significantly, then the solid body is not moving.
This allows us to rule out velocity drifts from the estimation.
Eventually, this improves the position information obtained
by integrating the velocity estimate. In [11], we proposed,
in a first approach, to model the magnetic field spatial
derivatives with low pass dynamics driven by white noises.
Here, we use an orthogonal trihedron of magnetometers, to
directly measure these derivatives and reconciliate magnetic
and inertial information. The experimental results that we
present lead us to believe it is possible to estimate the
position of a man who is investing a building while bearing
a low cost package consisting of an IMU and 3 additional
magnetometers . This objective fits in the network centric

warfare (as defined in [9]) context “Bulle Opérationnelle
Aéroterrestre” (BOA), led by the Délégation Générale pour
l’Armement (DGA) for the French Department of Defense.
A typical mission in the BOA environment is depicted in
Figure 1.

The article is organized as follows. In Section I, we define
the position estimation problem. Notations required for the
study of the dynamics are presented. In Section II, we expose
our use of magnetic disturbances and sensors. In particular,
in that case, we prove the observability of the velocity. In
Section III, we present experimental results, discuss imple-
mentation details, and comment on the calibration issues.
Finally, in Section IV, we conclude and suggest several
directions of improvement.

I. PROBLEM STATEMENT

In this section, we present the equation of motion of
a rigid body, the various frames under consideration, and

the measurement equations from available sensors (namely
gyroscopes, accelerometers and magnetometers).

A. Coordinate frames, system of equations, notations

An IMU (viewed as a material point) is located at the
center of gravity of a moving body we desire to estimate
the position of. This six degrees of freedom system can
simultaneously rotate and translate. A body-fixed reference
frame with origin at the center of gravity of the IMU is
considered. In the following, subscript b refers to this body
frame. The x, y and z axis are the IMU axis (i.e. are
consistent with the inner sensors orientations).

As inertial reference frame, we consider the local frame.
It corresponds to the North-East-Down frame when initial
heading is zero: NED, the X axis is tangent to the geoid and
is pointing to the north, the Z axis is pointing to the center
of the Earth, and the Y axis is tangent to the geoid and is
pointing to the East. Subscript i refers to this inertial frame.

The IMU delivers a 9 parameters vector [YV YΩ YM0
]T

obtained from a 3-axis accelerometer, a 3-axis gyroscope and
a 3-axis magnetometer. Measurements are noisy and biased.
Classically, we consider that the accelerometer signal YV
has a bias BV (independently on each axis) and suffers
from additive white noise µv ∈ R

3, and that both the
magnetometer signal YM0

and the gyros signal YΩ have
additive white noises µM ∈ R

3 and µΩ ∈ R
3, respectively.

Finally, there is a drift BΩ ∈ R
3 on YΩ. It is possible to

consider unknown scale factors to increase filtering accuracy,
but these are not necessary in a first approach. We note
BV ∈ R

3 the drift of the accelerometer and BΩ ∈ R
3 the

drift of the gyroscope.
The rigid body is also equipped with three external mag-
netometers. These deliver three 3 measurement vectors
[YM1

YM2
YM3

]T . Each magnetometer has its own un-
known scale factor, bias, and misalignment angles. To use
these signals, it is necessary to precisely obtain good esti-
mates of these unknown parameters. A calibration procedure
is presented in Section III.
Noting F the external forces (excluding gravity) acting on
the IMU, and R the rotation matrix from the inertial frame
to the body frame, we can write the measurement equations
from the IMU as Y = [YV YΩ YM0

]T with

YV = F −R~g +BV + µV

YΩ = Ω +BΩ + µΩ

YM0
= M + µM0











(1)

where ~g stands for the gravity vector with norm g, and M is
the magnetic field in the body frame. For the bias vector B =
[BV BΩ]T , several models can be considered depending
on accuracy requirements. A second order damped oscillator
driven by a white noise is a good choice. Classically, in filter
equations, bias will be treated in an extended state.

From a dynamical system point of view, the state of the
rigid body is described by the 12 following independent
variables.

• X = [x y z]
T is the position of the center of gravity

of the IMU in the inertial frame
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• V = [u v w]
T is the vector velocity of the center of

gravity of the IMU in the body frame
• Q = [φ θ ψ]

T stands for the Euler angles, i.e. the
angles between the inertial frame and the body

• Ω = [p q r]
T are the angular rates.

The input vector of the dynamics are the forces F =
[Fu Fv Fw]

T and torques. We call R the rotation matrix
from the inertial frame to the body frame.

R =





cψcθ sψcθ −sθ
−cφsψ + sφsθcψ cφcψ + sφsψsθ cθsφ
sφsψ + cφsθcψ −sφcψ + cφsψsθ cθcφ





with the notations c∗ = cos(∗), s∗ = sin(∗).
Remark: To avoid the well known singularities when θ

reaches ±π
2 , quaternions can be used to represent the Euler

angles. For sake of simplicity, we do not present quaternions
equations but they are handy in this situation, and useful to
implement the filter equations.

B. Equations of motion

The matrix of inertia of the system is unknown. It is
approximated by the identity matrix. Models for the unknown
forces F and angular rates Ω dynamics must be chosen.
A very basic choice is to model them with white noises.
Implicitly, the variance of the white noises νΩ and νF is
used to specify the manoeuvring capabilities of our system.
In summary, using the matrix R, we get the following system
dynamics

Ẋ = RTV

V̇ = −Ω × V + F

Q̇ = G(Ω, Q)

Ω̇ = νΩ

Ḟ = νF































(2)

with

G(Ω, Q) =





p+ (q sin(φ) + r cos(φ)) tan(θ)
q cos(φ) − r sin(φ)

(q sin(φ) + r cos(φ))cos(θ)
−1





II. USING MAGNETIC FIELD DISTURBANCES TO OBSERVE

THE VELOCITY

Naturally, the measurements are expressed in the body
frame. The magnetic field M is obtained through the relation

M = RMi (3)

The usual way to take the magnetic measurements into
account in attitude or position estimation techniques is to
consider it gives a direct measure of the heading vector.
This approach gives very good results, provided magnetic

disturbances are negligible. Yet, as can be seen in Figure 2
and Figure 3, these disturbances are not negligible indoor,
e.g. in typical business offices or houses.

In the inertial frame, the following three properties can be
derived from Maxwell’s equations [1].

• The magnetic field is stationary. According to Faraday’s
law of induction, in the absence of electrical sources
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Fig. 3. Histories of hzx the partial derivative of the z component of the
magnetic field in the x inertial direction during a 2.1 m move at constant
speed along a wood (therefore non-magnetic) rail.

∂Mi

∂t
= 0. In other words, the magnetic field is a

function of the position only. We note it Mi(X).
• The magnetic field is a potential field. According to

Ampère’s law, in the absence of electric and magnetic
sources, curl(Mi) = 0. Therefore, there exists a scalar
function h(X) such that Mi = ∇h.

• The divergence of the magnetic field is zero: div(Mi) =
0. Thanks to the previous property, this implies ∆h =
hxx + hyy + hzz = 0.

In the body frame, one can differentiate (3) to get the
following differential equation (thanks to a chain rule)

Ṁ = −Ω ×M +R∇2hRTV (4)

In [11], we considered this equation by assuming that ∇2h
was unknown and modeled its components by first order dy-
namics driven by white noises νH . We extended the state by
adding the magnetic field M and the independent gradients
H . Due to the three properties presented above, there are only
five independent gradients to reconstruct. These are, in the
inertial frame, H , [hxx hxy hxz hyy hyz]

T
∈ R

5.
Some experiments have shown that strongly varying mag-

netic fields are difficult to estimate using this approach.
In this paper, we use a set of magnetometers to evalu-

ate ∇2h. Three 3-axis magnetometers are precisely mounted
on a board, see Figure 4. The exact locations are defined by
vector lever arms l1, l2, and l3 which define a direct orthogo-
nal trihedron. The sought after variables H are obtained from
finite difference schemes. Further, we model their dynamics
by a white noise

Ḣ = νH (5)

Slopes depicted in Figure 3 suggest that spatial derivatives
of H are not negligible. For sake of performance, it is
recommended to include some higher order dynamics in both
measurement and dynamics equations. For sake of simplicity,
we do not present them here, but they can be easily taken
into account.

Under the preceding assumptions, the vector of measure-
ment obtained from the IMU, and the orthogonal trihedron
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of magnetometers is modeled as

YV = F −Rg +BV + µV

YΩ = Ω +BΩ + µΩ

YM0
= M + µM0

YM1
= M +R∇2hRT l1 + µM1

YM2
= M +R∇2hRT l2 + µM2

YM3
= M +R∇2hRT l3 + µM3







































(6)

As will now appear, Equation (4) plays a key role in
this observation problem. It is the only one giving direct
information on V .

A. Observability

1) Linearization: In a general approach, let us consider
the system obtained by linearizing the dynamics (2)-(4)-(5),
and the measurement Equation (6). We denote by ∂Xf the
partial derivative of f with respect to X ,∂Xf = ∂f

∂x
.

From Equations (2)-(4)-(5), we obtain














































AXV = ∂V Ẋ, AXQ = ∂QẊ

AV V = ∂V V̇ , AV Ω = ∂ΩV̇ , AV F = ∂F V̇

AQQ = ∂QQ̇, AQΩ = ∂ΩQ̇
AFF = 0
AΓΓ = 0

AMV = ∂V Ṁ, AMQ = ∂QṀ, AMΩ = ∂ΩṀ

AMM = ∂MṀ, AMH = ∂HṀ
AHH = 0

with

AXV = RT

AMV = R∇2hRT

AV F = AQΩ = AΓΩ = I3

AV V = AMM =





0 r −q
−r 0 p
q −p 0





AV Ω =





0 −w v
w 0 −u
−v u 0





AMΩ =





0 −Mz My

Mz 0 −Mx

−My Mx 0





AQΩ =





1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0 sin(φ)
cos(θ)

cos(φ)
cos(θ)





AQQ =







(qcφ−rsφ)sθ
cθ

qsφ+rcφ
cθ2

0
−qsφ− rcφ 0 0
qcφ−rsφ

cθ

(qsφ+rcφ)cθ
tan(θ) 0







From Equation (6), we derive






























CV Q = ∂QYV , CV F = ∂FYV
CΩΩ = ∂ΩYΩ

CM0M = ∂MYM0

CM1M = ∂MYM1
, CM1Q = ∂QYM1

, CM1H = ∂HYM1

CM2M = ∂MYM2
, CM2Q = ∂QYM2

, CM2H = ∂HYM2

CM3M = ∂MYM3
, CM3Q = ∂QYM3

, CM3H = ∂HYM3

with CV F = CΩΩ = CM0M = CM1M = CM2M =
CM3M = I3.

One can easily realize that the position X is not ob-
servable (it does not appear anywhere in the right-hand
side of the dynamics). We now focus on the reduced state
[V ;Q; Ω;F ;M ;H]T .

2) Ignoring the properties of the magnetic field: When
the properties of the magnetic field are ignored, a linear
system Σ̇ = AΣ, ∆Y = CΣ is obtained from the preceding
linearization. The state vector is [V ;Q; Ω;F ]T ∈ R

12.
Matrices A and C are, respectively,

A =









AV V 0 AV Ω AV F
0 AQQ AQΩ 0
0 0 0 0
0 0 0 0









C =

[

0 CV Q 0 CV F
0 0 CΩΩ 0

]

When computing the observability matrix O =
[

C; CA; CA2; ...; CA11
]

, one easily realizes
that its first column is identically equal to zero. In fact, the
rank of O is

rank[O] = rank[CV QAQQ]+rank[CV F ]+rank[CΩΩ] = 8

When ignoring the properties of the magnetic field, it ap-
pears that V and ψ are not observable. Using only gyroscopes
and accelerometers, only φ, θ, Ω, and F can be observed.

3) Accounting for the properties of the magnetic field: In
this setup, we consider the full state [V ;Q; Ω;F,M,H]T ∈
R

20. We obtained another linear system Σ̇ = AΣ, ∆Y = CΣ
with

A =

















AV V 0 AV Ω AV F 0 0
0 AQQ AQΩ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

AMV AMQ AMΩ 0 AMM AMH

0 0 0 0 0 0

















C =

















0 CV Q 0 CV F 0 0
0 0 CΩΩ 0 0 0
0 0 0 0 CMM 0
0 CM1Q 0 0 CMM CM1H

0 CM2Q 0 0 CMM CM2H

0 CM3Q 0 0 CMM CM3H

















The observability matrix is O =
[

C; CA; CA2; ...; CA19;
]

. In its first column,
a term appears, namely AMV (which corresponds to the
partial derivative of the magnetic fields with respect to the
velocity V ). In details,

rank[O] ≥ rank[AMV ] + rank

[

CV Q
AMQ

]

+ rank[CΩΩ]

+rank[AMVAV F ] + rank[CMM ] + rank





CM1H

CM2H

CM3H





As proven in the Appendix, O is full rank (20) under the
following conditions:
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• |θ| < π
2

• ∇2h is invertible
• ∇2h is not of the diagonal form diag(a, a,−2a), a ∈ R

and at least one of the first two components of RTθ R
T
φV

is non zero.

If the last condition is not satisfied, then rank(O) = 19
and the non observable state is ψ. It is possible to get
some physical insight into these conditions: the first two
components of RTθ R

T
φV correspond (up to a Rψ rotation)

to the coordinates of the velocity vector in the inertial frame
(x, y)-plane. At least, one of these has to be non zero, so that
ψ can be recovered. Also, if the ∇2h is of the mentioned
diagonal form, then the magnetic disturbances are insufficient
to recover the heading variable.

III. FILTER DESIGN AND EXPERIMENTAL RESULTS

Thanks to the discussed observability property of the
system (2)-(4)-(5)-(6), we implemented an extended Kalman
filter (EKF) to reconstruct the state [V ;Q; Ω;F,M,H]T ∈
R

20, and, eventually, use it to estimate the position X ∈ R
3.

A. Filter design

In practice, the state of our EKF is composed of 45 vari-
ables including configuration states (12 variables), magnetic
field and its independent first and second derivatives (3+5+7
variables), forces and torques (3+3 variables), sensors biases
(6 variables). We used equally valued tuning parameters
for the 3 axis. These are chosen to capture fast dynamics
(σacceleration = 8 m.s−2, σtorque = 4 rad.s−2). Classically,
discrete-time updates are implemented. Updates are synchro-
nized with the 75Hz measurements from the IMU.
The EKF states X evolves according to the following con-
tinuous time model Ẋ = F (X,U) where U is the input
variable.
First, a prediction from time k to k + 1 is performed, this
gives Xp and Pp , and then the EKF estimates the state
from the measurements, yielding Xe and Pe. We note T the
sampling time, Q and R being the covariances matrix of the
zero-mean dynamic and sensors white noises, respectively.
The updates are computed as follows:

Xp = Xe + F (Xe, U)T

Pp = (I +AT )Pe(I +AT )T +QT + (AQ+QAT )
T 2

2

+AQAT
T 3

3
Yp = [F −Rg +BV ; Ω +BΩ;M ;M +R∇2hRT l1;

M +R∇2hRT l2;M +R∇2hRT l3]
T

K = PpC
T (R+ CPpC

T )−1

Xe = Xp +K(Y − Yp)

Pe = (I −KC)Pp(I −KC)T +KRKT

B. Experimental testing bench and calibration issues

1) Testing bench:: Our experimental testing bench is de-
signed to illustrate the relevance of our approach in standard
buildings inside which the magnetic field is unknown and has

l1 =
[

||l1||
0
0

]

l2 =
[

0
||l2||

0

]

l3 =
[

0
0

||l3||

]

Fig. 4. Experimental testing bench with the four IMU, one giving
accelerations,raw data, magnetic field and the three other used as simple
external magnetometers

significant 3-dimensional variations. Off the shelves IMUs
are used (e.g. a 3DMGX1 from Microstrainr)

Four IMUs are fixed on a board which can simultaneously
rotate and translate in 3D. Only one out of the four is
actually used as an IMU. The remaining three are used as
3-D magnetometers. This board has been used in different
rooms in our building. Obtained results are very similar.

2) Calibration issues: While the four IMU are supposed
to be very similar, experimentally, a serious practical issue is
sensors calibration. Even if mechanical tolerances are indeed
small, we quickly realized that it was absolutely necessary
to determine bias, misalignment angles, and scale factors
for every magnetometer. Each magnetometer measurement
is modeled as follows, for j, (j = 0...3),

Yjm = αjRjYj + βj with β = [βj1 βj2 βj3]
T

Rj =





1 ψj −θj
−ψj 1 φj
θj −φj 1



αj =





αj1
αj2

αj3





The small scale of possible measurements ( ±1 G)prevents
us from using comparisons with a calibrated induc-
tion. Rather, we compute the unknown parameters αj ,
βj and Rj as the minimizers of a least square prob-
lem under the constraints that the reconstructed vector
(hxx, hxy, hxz, hyx, hyy, hyz, hzx, hzy, hzz) must define
a symmetric Hessian ∇2h with zero trace. A large number
of experimental data was used to define this least square
problem.

C. Experimental results

We consider the following normalized experiment. Se-
quentially, the board is moved forward along a 1 m straight
line in 10 cm steps. This motion is accurately measured.
No a priori information about the trajectory is given to the
filter. Data are transferred to a remote PC and treated off-
line. For sake of comparisons, we present position estimation
results obtained with three different methods. The first one is
presented here, it uses the four magnetometers. The second
method was presented in [11]. As already discussed, it uses
a single magnetometer. Finally, results obtained with inertial
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calculations (using only gyroscopes and accelerometers) are
presented.

For each conducted experiment, we expose speed and
position estimates histories. Blue plots refer to the x-axis,
green plots refer to the y-axis and red plots refer to the z-
axis.

Ignoring the magnetometers, position estimates diverge
over time see Figure 5(e). The filter can not get rid of errors
in velocities.

Using a single magnetometer, we obtain much better
results. This time, velocities, reported in Figure 5(c), remain
close to zero when the IMU is at rest. This prevents the
position estimates from diverging.

Most interestingly, when using the four magnetometers,
we improve the accuracy a lot. Results are reported in
Figure 5(a)(b). Errors in positions fall under ±2 cm.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we improve upon our previously obtained
results. Considering, as we did in [11], Equation (4), we
reconciliate the velocity estimate and the magnetic field
disturbances. Compared to our original approach, we de-
signed and used an experimental orthogonal trihedron of
four magnetometers, which gives, through finite difference
schemes, a direct measurement of the magnetometer field
spatial partial derivatives.
Accurate calibration of the sensors is a key issue that remains
to be explored further, it can be improved upon using
second order centered schemes. Real time implementation is
double using a PC laptop running Matlab. The computational
requirements can be reduced by neglecting some non crucial
states in the EKF. We carried out some experiments, reported
in Figure 5, to quantitatively Compare the improvement over
other methods.
Finally, we would like to give some preliminary 3-D exper-
imental results. Measuring this 3-D displacement requires
some specific instrumentation, that could not be used yet.
Quantifying the obtained accuracy remains to be done, but
the results seem positive. During this experiment, the rigid
body was moved (sequentially) along the three axis of an
orthogonal trihedron. This motion is easily recognizable in
Figure 6.
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APPENDIX

We wish to compute the observability matrix O =
[C;CA; ...;CA19] with C and A defined in Section III. O
is given in Equation (7). Bold elements (in brackets) play a
key role in the rank computation. We have seen that

rank[O] = rank[AMV ] + rank

[

CV Q
AMQ

]

+ rank[CΩΩ]

+rank[AMVAV F ] + rank[CMM ] + rank





CM1H

CM2H

CM3H





We now study each of these terms.
First, rank[AMV ] = 3, provided that ∇2h is invertible.

Then, as is proven in Proposition 2, rank

[

CV Q
AMQ

]

=

3. Simply, rank[CΩΩ] = 3. Provided that ∇2h is in-
vertible, rank[AMVAV F ] = rank[AMV ] = 3. Directly,

rank[CMM ] = 3. And finally, rank





CM1H

CM2H

CM3H



 = 5, as

is proven in Proposition 1.

Proposition 1: rank





CM1H

CM2H

CM3H



 = 5

Proof: Let us now consider the measurement equa-
tion (6) for the four magnetometers. We note the lever arm
in the inertial frame for each magnetometer j by lji =
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Fig. 5. Succession of steps when the experimental testing bench is horizontal. Three methods are compared. Top: using the presented four magnetometers
method. Middle: using a single magnetometer. Bottom: without magnetometer. Position estimates (a),(c),(e). Velocity estimates (b), (d), (f)

[ljxi ljyi ljzi]
T = RT lj . Considering the jth, magnetometer

we get

CMjH =
∂R∇2hRT lj

∂H

= R
∂

∂H









hxx hxy hxz
hxy hyy hyz
hxz hyz −(hxx+ hyy)









ljxi
ljyi
ljzi









= R





ljxi ljyi ljzi 0 0
0 ljxi 0 ljyi ljzi

−ljzi 0 ljxi −ljzi ljyi





Yet, rank





CM1H

CM2H

CM3H



 = rank





RTCM1H

RTCM2H

RTCM3H



. This last
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O =





















































0 [CVQ] 0 CV F 0 0
0 0 [CΩΩ] 0 0 0
0 0 0 0 [CMM] 0
0 CM1Q 0 0 CMM [CM1H]
0 CM2Q 0 0 CMM [CM2H|
0 CM3Q 0 0 CMM [CM3H]
0 CV QAQQ CV QAQΩ 0 0 0
0 0 0 0 0 0

AMV [AMQ] AMΩ 0 AMM AMH

[AMV] CM1QAQQ +AMQ CM1QAQΩ +AMΩ 0 AMM AMH

AMV CM2QAQQ +AMQ CM2QAQΩ +AMΩ 0 AMM AMH

AMV CM3QAQQ +AMQ CM3QAQΩ +AMΩ 0 AMM AMH

0 ∗ ∗ 0 ∗ ∗
0 ∗ ∗ 0 ∗ ∗
∗ ∗ ∗ [AMVAVF] ∗ ∗





















































(7)

matrix is, in fact,





RTCM1H

RTCM2H

RTCM3H



 =





























l1xi l1yi l1zi 0 0
0 l1xi 0 l1yi l1zi

−l1zi 0 l1xi −l1zi l1yi

l2xi l2yi l2zi 0 0
0 l2xi 0 l2yi l2zi

−l2zi 0 l2xi −l2zi l2yi

l3xi l3yi l3zi 0 0
0 l3xi 0 l3yi l3zi

−l3zi 0 l3xi −l3zi l3yi





























The bold elements in the three first column correspond to
(RT [l1l2l3])

T which is of rank 3, then the rank of the lines
1,4 and 7 is 3. Now let us consider the last two columns. By
computing the three 2 × 2 determinants, we obtain: l12

yi +
l12
zi for the first one and l22

yi + l22
zi and l32

yi + l32
zi for the

others two. Assuming that these determinants are all zero,
last conditions are exclusive. If the first one holds, then the
rotation R is around the x axis. If the second holds, then the
rotation R is around the z axis (with an angle of −π/2). If
the third holds, then the rotation R is around the y-axis (with
an angle of π/2). At least, one of the determinants must be
non zero. This gives the conclusion.

Proposition 2: Assuming that |θ| < π
2 ,

rank

[

CV Q
AMQ

]

≥ 2. Sufficient conditions for

rank

[

CV Q
AMQ

]

= 3 are that, at least one of the first

two components of RTθ R
T
φV is non zero and that ∇2h is

not of the form diag(a, a,−2a), a ∈ R.
Proof: By definition,

CV Q =
∂

∂Q
(−Rg)

= g





0 − cos(θ) 0
cos(θ) cos(φ) − sin(θ) sin(φ) 0
− sin(φ) cos(θ) − sin(θ) cos(φ) 0





which always satisfy, provided |θ| < π
2 , rank(CV Q) = 2.

The possible extra rank may comes from the third column

AMψ = ∂M
∂ψ

of AMQ:

AMψ =
∂

∂ψ
(R∇2hRTV )

=
∂

∂ψ
(RφRθRψ∇

2hRTψR
T
θ R

T
φV )

= RφRθ
∂

∂ψ
(Rψ∇

2hRTψR
T
θ R

T
φV )

Note RTθ R
T
φV = Ṽ , it follows that

{
∂

∂ψ
(Rψ∇

2hR−ψṼ ) = 0}

⇒ {∀(ψ1, ψ2) ∈ R2, Rψ1
∇2hRTψ1

Ṽ = Rψ2
∇2hRTψ2

Ṽ }

By evaluating these last conditions for particular
points: (ψ1 = π

2 , ψ2 = 0),(ψ1 = −π
2 , ψ2 = 0) and

(ψ1 = π, ψ2 = 0), we obtain, after some calculus, that
∂
∂ψ

(Rψ∇
2hR−ψṼ ) = 0 implies that either:

(ũ, ṽ) = (0, 0) or ∇2h is of the form diag(a, a,−2a), a ∈ R.

Conversely, if this condition fails, then
∂
∂ψ

(Rψ∇
2hR−ψṼ ) 6= 0 which concludes the proof.
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