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In this article, we propose a method to estimate the velocity of a projectile from strap-
down transverse accelerometers. The ballistic projectile under consideration has a high
velocity and a high spin rate. The transverse accelerometers measure the aerodynamics
forces in a frame that is oscillating due to the pitching and yawing motion. We exploit
the linearized pendulum-like equations of motion of the rotation dynamics to determine
the frequencies contained in the spectrum of the measurements. Analytically, we show
that three frequencies are present, the expressions of which explicitely contain the air ve-
locity. Further, it is shown that, for the most part of the flight, only one frequency is
truly visible. Extracting the value of this frequency from accelerometer signals can be
performed over short time windows with a super resolution algorithm. Eventually the ve-
locity can be estimated from an inversion of the analytic formula of the theoretical value of
the frequency obtained from the aerodynamic model of the projectile. Realistic simulation
results are presented, stressing the relevance of the approach, along with perspectives on
the treatment of real in-flight data.

Nomenclature

M Mass of the projectile (M = 44.997 kg)
D Caliber of the projectile (D = 0.155 m)
Il Longitudinal moment of inertia of the projectile (Il = 0.1537 kg.m2)
It Transverse moment of inertia of the projectile (It = 1.812 kg.m2)
x Coordinate along the horizontal axis of the shot
y Altitude coordinate
z Deviation coordinate
η Horizontal angle from the shot main axis to the projection of the velocity of the projectile

on the horizontal plane
θ Vertical angle from the direction defined by η to the velocity of the projectile
β Horizontal angle from the velocity of the projectile to the projection of its main direction

on the plane defined by η and θ
α Vertical angle from the direction defined by β to the projectile’s main direction
ϕ Angle describing the roll of the projectile around its main axis in the trajectory frame
v Linear velocity of the projectile
Ω Angular velocity Ω = (p, q, r) (for fast-spinning projectiles ||Ω|| ' |p| ' |ϕ̇|)
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I. Introduction

This article exposes a method to estimate the linear velocity of a high velocity spinning ballistic projectile
(shell). The problem under consideration deals with the general question of full state (6 DOF) estimation
for the next generation of shells (so-called “smart shells”, a prime example beeing Raytheon’s Excalibur),
that will contain various types of sensors. Commonly, such solid body can be equipped with low-cost
inertial sensors, which as is well known,1–7 can be used to reliably solve the navigation problem, at the
expense of reasonably complex on-board calculations and off-line tasks such as calibration of the multi
sensor system.8 Various experiments have been reported in the literature for UAVs,9–11 UGVs,12 micro-
satellites,13–15 sounding rockets,16 spacecrafts17–19 among others. Similar ideas are being transposed to the
case of shells. However, shells have some particular features that significantly impact the nature of the
navigation problem.

The trajectory of a shell is short due to its high speed, and (almost always) subjected to a high spinning
rate (in the roll direction).20–22 The spin is voluntarily created to stabilize the trajectory of the shell and to
reduce the impact of side wind. First, the short duration of the flight causes problem to GPS sensors, which
usually work at low measurement rates. A typical flat shot lasting less than 2 sec on a proving ground, while
a ballistic shot would last less than 45 sec, this leaves the 2-6 Hz GPS receiver little time to produce reliable
information. Furthermore, the spin discards the low-cost gyrometers from being used. Typically, rotation
rates of 300 Hz are considered, which is out of the scale of most low-cost gyrometers. Finally, gyrometers
are prone to be damaged by the high impact the shell is subjected to right during the shot. Unfortunately,
gyrometers are a key element in navigation algorithms.23–25 These facts make the navigation problem for
shells a difficult one.

In this article we propose a method, that is unusual, to solve one central question in navigation of shells:
the estimation of its linear velocity. The method takes advantage of the oscillations the shell is subjected
to. It uses transverse accelerometers signals to generate a roll-free signal which measures the yaw and pitch
coupled dynamics. This pendulum-like rotation dynamics is created by aerodynamics effects in a way that
is well modeled. Rather than simply inverting aerodynamics lookup tables (e.g. inverting the measurement
of the drag to estimate the velocity through an estimate of the dynamic pressure), we estimate frequencies
and deduce the value of the linear velocity from this estimate. The technique employs frequency detection
algorithms (super-resolution26) that are well suited for the signal generated during the ballistic flight. The
results presented in this article show the potential of the method which is tested on simulation data. It
is shown that during most of the ballistic flight, the linear velocity can be recovered with a good level of
accuracy. At the end of the paper, some perspectives are given for further studies in view of application to
real flight data.

II. Model

II.A. The shell

The projectile under consideration is a 155 mm caliber shell equipped with several sensors (three-axis mag-
netometers, 3-axis accelerometer), a data transmitter with its antenna, and batteries. No gyrometers are
embedded due to the harshness of the environment (the shot generates a 15.000 g acceleration which would
cause serious damages to the gyrometers, not to mention the spin rate of 300 rotation per second the gy-
rometers would need to endure). A schematic view of such a “smart-shell” (with smaller size) is reported in
Figure 1, more details are given in27 .

II.B. Model

Classically, several frames of reference are used. The notations are given in the Nomenclature section. The
two important reference frames in the model of the equations of motion we consider are the inertial (ground)

frame and the trajectory frame (~t, ~s,~h). The trajectory frame is defined with one axis co-linear to the velocity
vector of the shell, and the two other axis being defined with the rotations described in Figures 2,3.

Usually, the body frame is defined from the inertial frame with the 3 Euler angles of aeronautics (the yaw,
pitch and roll angles), and thus 2 angles are needed to relate the body frame to the trajectory (the angle of
attack αaero and the sideslip angle βaero). Here, we consider 2 angles to define the trajectory frame within
the inertial frame (η and θ), and thus 3 angles are needed to represent the body frame in the trajectory
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Figure 1. An Institut Saint-Louis smart-shell with its sensors and data transmitter.

Figure 2. Trajectory frame definition

Figure 3. Body frame definition

frame : α and β, representing the pitching and yawing motion in the trajectory frame, and ϕ, representing
the rolling motion in the trajectory frame.a

The 3-axis accelerometer, when precisely located at the center of mass of the shell, produces the following
three signals

Ac ' Aacc

Aa ' −
D + L

M
βaero +

K

M
αaero

Ab ' −
D + L

M
αaero +

K

M
βaero

(1)

where Aacc is the ratio of the norm of the vector of aerodynamic forces and the mass, and D, L, K the
norms of the Drag, Lift and Magnus forces.

The high spin rate has a major effect on the two signals Aa and Ab from the transverse accelerometers.
However, a simple sum of squares of these two signals in quadrature provides a signal of interest

f(t) = A2
a(t) +A2

b(t) = A2
acc(t)(α

2(t) + β2(t)) (2)

aNote that αaero and βaero are related to α and β, through a rotation matrix of angle ϕ.

3 of 8

American Institute of Aeronautics and Astronautics



Interestingly, the two angles α and β satisfy coupled dynamics that are detailed below.
Under the assumptions that the linear velocity, and the trajectory angles η and θ are slowly varying, and

if the angles α and β are small, then the complex valued variable

ξ(t) = α(t) + ıβ(t)

satisfies the so-called equation of ballistics (see28 and references therein) (3).

ξ̈ +
v

D
(a1 − ib1)ξ̇ +

v2

D2
(a2 − ib2)ξ =

v2

D2
(a3 − ib3) (3)

where the ai and bi are depending on the linear velocity, the angular velocity, the aerodynamics coefficients
at zero angles of attack and the altitude (through the dependance of the air density). Detailled expressions
can be found in Appendix. Equation (3) defines a complex-valued damped oscillator.

III. Frequency content of the transverse accelerometers signals

The signals from the two transverse accelerometers have been lumped into f(t) through (2). A careful
resolution of the ballistic equation (3) allows one to decompose its solution as the sum of three terms,
among which two are damped oscillating terms. In details, using two constant complex coefficients λ1 and
λ2 depending on the initial conditions, one has, on a window small enough for the coefficients of (3) to be
regarded as constant,

ξ(t+ δt) =
a3 − ib3
a2 − ib2

+ λ1f1(δt)eiω1δt + λ2f2(δt)eiω2δt (4)

with

f1(δt) = e
v

2D (a1−M1)δt, f2(δt) = e
v

2D (a1+M1)δt, ω1 =
v

2D
(b1 +M2), ω2 =

v

2D
(b1 −M2)

where M1 and M2 are the uniquely defined strictly positive reals such that

(M1 + iM2)2 = (a21 − b21 − 4a2) + i(4b2 − 2a1b1)

namely

M1 = −
[
(a21 − b21 − 4a2)2 + (4b2 − 2a1b1)2

] 1
4 sin

[
(
1

2
arctan

(
4b2 − 2a1b1
a21 − b21 − 4a2

)]
M2 =

[
(a21 − b21 − 4a2)2 + (4b2 − 2a1b1)2

] 1
4 cos

[
(
1

2
arctan

(
4b2 − 2a1b1
a21 − b21 − 4a2

)]
It appears that, once squared to compute the norm of ξ(t) appearing in (2), the two frequencies appearing
in (4) give rise to three damped oscillating terms. In details, one has

f(t) = A2
acc

[∣∣∣∣a3 − ib3a2 − ib2

∣∣∣∣2 + 2|λ1|2f1(t)2 + |λ2|2f2(t)2 +

3∑
i=1

Cifi(t) cos (ωit+ φi)

]
(5)

The three frequencies ω1 > ω3 > ω2 contained in this signal are

ω1 =
v

2D
(b1 +M2), ω3 =

v

D
M2, ω2 =

v

2D
(b1 −M2) (6)

In this expression, ω1 and ω2 are functions of the linear velocity, the roll velocity (and the altitude). We
now assume that the dependency on the altitude can be neglected (this is particularly true for flat fires)
or compensated for (using an estimate of the altitude, which, in turn, could be obtained by integrating the
linear velocity without too much uncertainty as the initial conditions are certain). We also consider that the
roll velocity is known. As already mentioned in the introduction of the article, no gyrometers are embedded
in our shell, therefore an alternative solution is required. For this, the task of estimating the angular velocity
of the rigid body can be solved using the embedded magnetometers which serve here as direction sensors,
through a state observer.29,30 Alternatively, a frequency analysis of the magnetometers signal can also be
used.
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Figure 4. Accelerometric signal f(t) from simulation data

IV. Spectrum analysis: frequency detection

A common practice to estimate the frequency of a monochromatic signal (or a multisinusoidal signal) is
Fast Fourier Transform (FFT). This technique, at the heart of the periodogram technique, is often employed
in various applicative situations such as target identification from radar measurements, acoustics, among
others. The FFT is well suited for cases where a relatively large window can be used to estimate the
frequency.31 This is necessary to avoid boundary effects, spectral aliasing, and frequency leak31b. This is
not the case in the application considered here, because the signal is decaying over time. Employing a large
window violates the assumption that the signal has constant magnitude, which is implicitly required for the
FFT technique to produce quality results.

Fortunately, alternative solutions exist. We use the super-resolution technique recently developed.32

In a nutshell, this technique is optimization-based (in the time domain), as it seeks the frequencies of a
multisinusoidal signal as the solution of a best-fit problem. Various implementations exists, e.g. Prony based
methods (MUSIC33) and total-variation norm minimization methods.26 On top of improving resolution (as
the name of super-resolution suggests it), the methods have proven capabilities of outlier rejection even with
high noise/signal ratios. To work effectively, super-resolution methods require that the numbers of frequencies
to be located in the signal be known in advance. This is precisely the case in our application. Based on the
previous modeling and calculus, we know that the signal derived from the transverse accelerometers contains
1 or 3 frequencies to be detected. Super-resolution methods can deal with short time windows, typically half
a period of the lowest frequency to be detected is enough. This is a very helpful feature in our case.

V. Filtering the velocity from spectrum measurements

As we showed, precession frequencies dependencies on the velocity are well known ;

ω1(v, p, y) =
p

2

Il
It

+
v

2D

[
(a21 − b21 − 4a2)2 + (4b2 − 2a1b1)2

] 1
4 cos

[
(
1

2
arctan

(
4b2 − 2a1b1
a21 − b21 − 4a2

)]
ω2(v, p, y) =

p

2

Il
It
− v

2D

[
(a21 − b21 − 4a2)2 + (4b2 − 2a1b1)2

] 1
4 cos

[
(
1

2
arctan

(
4b2 − 2a1b1
a21 − b21 − 4a2

)]
ω3(v, p, y) =

v

D

[
(a21 − b21 − 4a2)2 + (4b2 − 2a1b1)2

] 1
4 cos

[
(
1

2
arctan

(
4b2 − 2a1b1
a21 − b21 − 4a2

)]
One can thus easily design an estimator of the velocity from measurements of those frequencies, using

the roll rate p and the altitude y as external outputs.

bAn intrinsic weakness of the FFT-based technique is its coarse resolution, i.e. the relevant frequencies are located with a
poor resolution. This is a problem in our case.
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VI. Results

The signal stemming from the transverse accelerometers is treated using the MUSIC algorithm. The
signal is obtained from a reference simulation model. It consists of regularly spaced samples obtained at
104 Hz. The MUSIC algorithm is run on moving windows of 0.2 s and 2 s (to adapt respectively to ω1 and
ω2). By contrast with FFT-based techniques, no smoothing nor filtering of the data is performed. MUSIC
is set-up to search for a single frequency. The results of the frequency detection are reported in Figure 5
and Figure 6. In this figure, the true value of the frequencies ω1 and ω2 are given for comparisons with the
estimation obtained from MUSIC. As one can see, whereas ω1 is detected with great accuracy due to being
visible in small windows on which its value does not vary much (although it vanishes after the peak altitude
of the trajectory), ω2 is on the other hand being detected during the whole flight, but with poor accuracy
due to the large windows needed for its detection.

Figure 5. Estimate of the highest frequency ω1 in the signals obtained from the transverse accelerometers measurements

Figure 6. Estimate of the lowest frequency ω2 in the signals obtained from the transverse accelerometers measurements

Based on the previous frequency detection, the linear velocity can be estimated with a filter based on
from the closed-form expression (7). We chose to use only ω1, as its detection is the most accurate, and
given that the filter can be made convergent before ω1 vanishes.

ω1(v, p, y) =
p

2

Il
It

+
v

2D

[
(a21 − b21 − 4a2)2 + (4b2 − 2a1b1)2

] 1
4 cos

[
(
1

2
arctan

(
4b2 − 2a1b1
a21 − b21 − 4a2

)]
(7)

The filter yields the velocity estimation reported in Figure 7, and produces quite satisfying result given
a 20% initial error. We chose not to display the result of the filter using both ω1 and ω2 measurements ; its
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result are quite bad, which is not surprising when one look at the poor detection of ω2 used.

Figure 7. Estimates of the shell linear velocity from shot to target reaching.

VII. Conclusion and perspectives

In this paper we have exposed the principles of a novel technique which uses the signal from transverse
accelerometers to estimate the linear velocity of a high velocity spin projectile (shell). This technique is
very different from existing ones, e.g. the use of axial accelerometer to estimate the linear velocity from
inversion of the drag model (similarly to Pitot sensors). Here, we exploit the coupled pitching and yawing
dynamics and estimate the linear velocity through the dependency of the natural frequency of these coupled
pendulum-like dynamics. Interestingly, the numerical treatment that are employed are, by nature, robust
to faulty data. However, several difficult points can be anticipated in view of practical applications. Pre-
liminary investigations of actual data recorded during test shots reveal that the signals from the transverse
accelerometers is corrupted not only by noises, which to some extent are not troubling our method, but by
parasitic sensed motions caused by their locations inside the shell. By contrast with the assumption formu-
lated in this article, the transverse accelerometers are not located at the center of mass, but slightly away
from it (at a distance of 0.1 mm). This distance can be quite accurately measured, but because the rotation
rate of the shell is very high (typically 300 Hz), the error in the transverse accelerometers measurement is
still not negligible and difficult to reduce in the presence of sensors misalignment and scale factors.
The method described in this paper can actually be extended easily by using the feedback from only one
transverse accelerometer, as it is shown that the significant (regarding amplitude) inertia terms yields the
same frequencies (p− ω1 and p− ω2) as an ideal transverse accelerometer.

Appendix

Below the expressions of coefficients appearing in the ballistic equation (3) are given.

a1 = −BMCmq +BF (ĈLα − ĈD), a2 = −BM ĈMα, a3 =
gD cos θ

v2
(−BMCmq +BF ĈD),

b1 =
p

v
D
Il
It
, b2 = b1(BF ĈLα −BM Ĉmag−m

It
Il

), b3 =
gD2 cos θ

v3
p
Il
It
,

BF =
ρaSD

2m
, BM =

ρaSD
3

2It
.

The aerodynamic coefficients are functions of the Mach number and specific to the projectile considered.
ĈD describes the drag force, ĈLα the lift force, Ĉmag−m the Magnus moment, ĈMα the overturning moment,
and Cmq the pitch-damping moment.
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