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1. INTRODUCTION

As many industries, the oil sector has to cope with dynam-
ical systems with delays. One main reason why delays are
ubiquitous in this field is that transport of fluid material
is a dominant problem in almost all applications related
to oil. Another factor is the long distances over which fluid
transport (horizontal or vertical) has to be considered.
In this article, we present several representative practical
examples. With simplifying assumptions, we expose some
problems where mitigation of the effects of delays are the
central question.

Control engineers know that delays have negative impacts
on closed-loop control. However, the malicious effects of
the variability of the delay are often underestimated. The
examples chosen in this article all feature varying delays.
We explain why, and we stress why this is a problem. After
some recall on recent methodological tools developed to
control delay systems, the paper covers three distinct types
of variation.

First, we explain the control-induced delay variations. In
the blending problem we consider, the delay is defined by
an implicit integral equation where the controls, which are
flow-rates, have an effect. In this case of deterministic vari-
ations, we stress the surprising non-symmetric behavior
observed during step-ups and step-downs responses. The
predictability of the delay allows one to compensate for
it with good accuracy, using a motion planning technique
for open-loop and a generalized predictor for closed-loop.
Interestingly, this poses challenging stability analysis prob-
lems, and we sketch solution for them.

Second, we explain the problems associated with delays
caused by mis-synchronization of data produced by geo-
graphically distributed instrumentations. Here, the delay
is uncertain and can not be compensated for. We stress
its harmful effects on a simple, but state-of-the-art, mon-
itoring algorithm employed to check the mass balance of
an oil and gas production network. As will appear, delay
induced by dating uncertainty can be more detrimental
than measurement noises.

Third, we consider the problem associated with non-
causality of communication over networks. Inside a vertical
well, we expose how the system of communication with
repeaters can cause misinterpretation of measurements
when received at the surface. This problem lies at the
frontiers of our investigations. We briefly discuss how to
address it.

2. NEW CONTROL METHOD FOR DELAY
SYSTEMS

The techniques of delay compensation are not new. The
most widely used methods are predictor approaches (see
e.g. in Artstein (1982); Kwon and Pearson (1980); Mani-
tius and Olbrot (1979); Smith (1958)). As established in
numerous surveys and research works (Niculescu (2001);
Richard (2003)), the lack of robustness of this technique
with respect to the uncertainty on the delay is still a
major concern in automatic control theory. This lack of
robustness often appears as a performance bottleneck in
applications (see e.g. Mondie and Michiels (2003)).

Lately (see Krstic (2008, 2009b); Krstic and Bresch-Pietri
(2009); Krstic and Smyshlyaev (2008)), a new class of
predictor-based techniques has been proposed to address
this uncertainty. In particular, this methodology is based
on the seminal idea (see e.g. Krstic (2008)) of modeling
the actuator delay as a (fictitious) transport partial dif-
ferential equation (PDE). Essentially, this is an analysis
tool, useful to establish convergence. In details, one uses a
backstepping boundary control method on the transport
PDE introduced to model the delay. This transformation
allows to use systematic Lyapunov design tools for robust
stabilization and adaptation. A list of references on this
topic includes Bekiaris-Liberis (2014); Bekiaris-Liberis and
Krstic (2013a,c); Krstic (2009a); Bresch-Pietri et al. (2014,
2012a,b,c). We now sketch a (brief and partial) state-of-
the-art in relation to the examples presented in this article.

2.1 Exact compensation of a single delay

Consider the following system

2nd IFAC Workshop on Automatic Control in Offshore Oil and Gas Production,
May 27-29, 2015, Florianópolis, Brazil

Copyright © 2015, IFAC 68



Ẋ(t) = AX(t) +BU(t−D)

where D is a constant delay. Due to the delay, the system
is infinite-dimensional. When the delay is compensated,
the system becomes finite dimensional, because it becomes
delay-less. For a constant delay, exact compensation can
be achieved by using a finite time prediction over the exact
value of the delay Artstein (1982); Kwon and Pearson
(1980); Manitius and Olbrot (1979), i.e.

U(t) = KX(t+D)

= K

[
eADX(t) +

∫ t

t−D
eA(t−s)BU(s)ds

]
(1)

where the feedback gain K stabilizes the delay-free dynam-
ics. This is, as is well-known, a non robust control strategy.
In particular, uncertainties in the system dynamics and
delay reveal troublesome. Fortunately, some degree of ro-
bustness can be added by employing adaptive control tech-
niques developed on the basis of this prediction technique.
For example, one can refer to Bresch-Pietri et al. (2012a)
where several classic cases of equilibrium regulation are
treated: parametric uncertainties, disturbance rejection,
partial state measurement, or delay adaptation.

2.2 Robust compensation of a single varying delay.

Following Krstic (2009a), consider the more general system

Ẋ(t) = AX(t) +BU(t−D(t))

In the case of a varying delay, the prediction has to be done
over a varying horizon. This gives (see Nihtila (1991))

U(t) = KX(η−1(t)) where η(t) = t−D(t) (2)

Importantly, for this controller to be well-defined, the η
function has to be invertible (as one has to use its inverse
η−1). This means that every information sent has to be
received once and only one by the system. A sufficient
condition for this is

Ḋ(t) < 1, ∀t (3)

which we will refer from now-on as “causality condition”.

In general, the prediction formula (2) does not provide
exact delay compensation, since future variations of the
delay are not known in advance. We have

Ẋ(t) = AX(t) +BX(t−D(t) +D(t−D(t))︸ ︷︷ ︸
6=0

)

At least, one shall investigate the possible impact of this
mismatch on asymptotic stability. This can be done by
studying a partial differential equation reformulation using
a special backstepping transform. This rewriting allows
a Lyapunov-Krasovskii analysis. A result is that if the
control gain K in (2) can be chosen sufficiently small, then
the closed-loop system is asymptotically stable (Bresch-
Pietri et al., 2014, Theorem 1) 1 .

2.3 Non causal delay

The generalized predictors (2) and their extensions have
the capability of treating variable delays and uncer-
tain delays (Bekiaris-Liberis and Krstic (2013a,b); Krstic

1 This result has (indirect) connections with the usual robustness
margin determined from the Nyquist criterion for LTI systems

(2009a)). However, all these works share the common
assumption (3).

If this assumption fails, then the principle of causality
is violated. The delay increases faster than the time
grows. Under such circumstances, information transmitted
through a channel delayed in this way does not constitute
a continuous flow of data, but produces an intermittent
flow. Also, the rule of first-in first-out (FIFO) does not
hold anymore.

Assumption (3) has been instrumental in all the works con-
ducted so far. It has appeared both explicitly or implicitly,
as a consequence on bounds formulated in the statements
of convergence results.

Interestingly, temporary violation of this assumption is not
necessarily causing major trouble in the stability analysis.
It is more a condition that shall be satisfied “on average”,
as has been formulated in Bresch-Pietri and Petit (2014),
under the relaxed form

1

t− hi

∫ t

hi

Ḋ(τ)2dτ < δ, ∀t ∈ [hi, hi+1] (4)

for some ordered sequence (hi) of discontinuity points
limhi = +∞, ∆ ≤ hi+1 − hi ≤ ∆. Of course, (3) implies
(4).

3. CONTROL-INDUCED DELAY VARIATIONS:
TRANSPORT PHENOMENA

We now present a first example where the delay depends on
past values of the control. Consider a transport phenomena
where the control variable is, directly, or indirectly, the
flow-rate 2 . Consider that the flow is incompressible, single
dimensional, so that the flow-rate is (spatially) uniform
but time-varying. At any instant, the flow-rate can be
freely changed (within some physical upper and lower
limits). However, propagation of material takes time. If the
nature (e.g. concentration) of the fluid matters, then a de-
lay appears, as a simple effect of finite-speed propagation
of medium. This is the case in flow networks employed for
blending semi-finished products in refineries. This example
is pictured in Figure 1.

The flow discussed above satisfies a simple conservation
principle (leaving out the effects of viscosity), which is
equivalently written under the form of a simple partial
differential equation defined over a spatial domain x ∈
[0, 1]

∂tξ(x, t) = u(t)∂xξ(x, t)

where ξ is the propagated state and u in the input (flow-
rate). The (smooth 3 ) solutions of this PDE are such that

ξ(1, t) = ξ(0, t−D(t)) (5)

where D(t) is defined by∫ t

t−D(t)

u(τ)dτ = 1 (6)

Using (5), one defines a delayed input-output relation.
This delay is defined by the implicit integral equation (6).

2 It may be necessary to clarify that the flow-rate can be itself a
distributed variable, as is the case of compressible flow Di Meglio
et al. (2012a,b); Sinègre et al. (2005)
3 Implicitly, we ignore shocks.
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By propagating this reasoning from downstream sections
of the networks to upstream (see Figure 2), we define a
cascade of input-output relations. Eventually, the control
also appears in the definition of each blending, more
precisely, in the ratio of the blending. Ignoring the delay
dependence on the control, the system is a linear MIMO
system. With the dependance of the delays, it becomes a
very intricate system.

Generally, systems having a delay of the form (6) are dif-
ficult to control and present a non-symmetric behavior for
step-ups and step-downs. We report here results from Bar-
raud (2006) in Figure 3, and Figure 4 for a first-order linear
system with an input delay of the form (6). The presented
results were obtained using a Smith predictor, with a low-
pass filter in its outer loop bringing a valuable level of
robustness.

However, the complex dependance of the outputs of the
system with respect to the inputs can be inverted. As is
shown in Petit et al. (1998), it is possible to completely
determine the input histories corresponding to any output
histories, provided that the number of outputs equals the
number of inputs. The problem of motion planning can
thus be solved, at least formally.

To understand the basics of the algebraic method em-
ployed to parameterize all the solutions of the system 4 ,
we simply recall that in each section (say the ith) of the
network, the delay is defined by∫ t

t−∆(t)i

ui(τ)dτ = Vi

where Vi is a liquid holdup (volume).

Therefore, by introducing the output

yi(t) =

∫ t

0

ui(τ)dτ

we deduce the delay histories as

ηi(t) , t−∆(t)i = y−1
i ◦ (yi(t)− Vi)

(where ◦ denotes the function composition) and then

η−1
i (t) = y−1

i ◦ (yi(t) + Vi)

This property of the system is instrumental for solving two
important problems: planning the production for sharp
transient, and reconciling data.

In the first of these two problems, it is necessary to de-
termine the relevant control histories to produce a given
amount of some finished product, followed by another
amount of a different product, and so on in a sequence
defined according to the market demand and the avail-
ability of semi-finished products. Each finished product
corresponds to a very different recipe of semi-finished
products. In turn, this defines very different set of val-
ues for the delays appearing in the various parts of the
network. It shall be noted that the property of invert-
ibility discussed above implies that, formally, any smooth
transient between outputs can be achieved thanks to the
inputs. Therefore, in finite time, the production can be
achieved without any product losses that would be caused
to off-specs production. This problem can be solved for
any network admitting a binary tree representation. The
4 which is said to be δ-flat Mounier (1995)

Fig. 1. Blending in a refinery

algorithm permitting to reconstruct the input histories is
as follows, given here for a 3 inputs network with 1 pre-
blend (see Figure 2) and 2 liquid holdups (volumes) v1,
v2.

Algorithm

(1) Chose any smooth increasing functions y1, y2, y3, de-
fined on some interval [0, T ], with zero initial values,
and final values consistent with production objectives

(2) Define

η−1
2 = (y1 + y2 + y3)−1 ◦ (y1 + y2 + y3 + v2)

η−1
1 = (y1 + y2)−1 ◦ (y1 + y2 + v1) ◦ η−1

2

(3) Compute the control histories according to the fol-
lowing formulas

u1(t) =

ẏ1 ◦ η−1
1

(ẏ1 + ẏ2) ◦ η−1
1

(ẏ1 + ẏ2) ◦ η−1
2

(ẏ1 + ẏ2 + ẏ3) ◦ η−1
2

(ẏ1 + ẏ2 + ẏ3)(t)

u2(t) =

ẏ2 ◦ η−1
1

(ẏ1 + ẏ2) ◦ η−1
1

(ẏ1 + ẏ2) ◦ η−1
2

(ẏ1 + ẏ2 + ẏ3) ◦ η−1
2

(ẏ1 + ẏ2 + ẏ3)(t)

u3(t) =

(ẏ1 + ẏ2 + ẏ3)(t)− u1(t)− u2(t)

In the second problem, accurate computation of each of
the delays allows to appropriately compare measurements
to predictions. This is instrumental in determining (both
qualitatively and quantitatively) the true nature of each
of the semi-finished products. This property can be used
to define a model-based adaptive control scheme, aiming
at compensating any such uncertainty (see Chèbre et al.
(2010, 2011)).

Interestingly, closed-loop control of such a system is not
a simple task. To illustrate this fact, one shall recall the
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U1

U2

U3

V2

V1

Fig. 2. A preblend network

input
output

Fig. 3. Non-symmetric response for step-ups and step-
downs

non-symmetric behavior being observed during step-ups
and step-down responses. No such thing is observed on
linear system, even with constant delays. However, one
can still apply the predictor approach to control one such
system. Indeed, the predictability of the delay allows one
to compensate for it with good accuracy. The generalized
predictor (2) is as follows

U(t) = K

[
eAD(t)X(t) +

∫ t

t−D(t)

eA(t−s)BU(s)ds

]
(7)

To establish convergence of the closed-loop system, one
has to introduce a Lyapounov-Krasovskii functional of the
form

V (t) = ‖X(t)‖2 +

∫ t

t−D(t)

U(τ)2dτ+D(t)2

∫ t

t−D(t)

U̇(τ)2dτ

The implicit relationship (6)-(7) between the input and
the delay is quite involved. The delay impacts the input
which impacts the delay, in a never-ending loop. This
fact can be written down in the following delay functional
differential equation

ε(n) + an−1ε
(n−1) + ...+ a0ε = E(Ḋ, ..., D(n), εt, ..., ε

(n−1)
t )

where ε is the input error, E is a polynomial at least
quadratic in all its arguments, εt denotes past values of ε
over the interval [t−D0, t] whereD0 is some fixed (positive)
value, and the (ai) coefficients can each be freely chosen
using the (vector of) control gains K.

setpoint
PID
Smith predictor
Robust Smith predictor

Time

Fig. 4. Closed-loop response of a system with uncertain
delay using several controllers, including a robustified
Smith predictor

This equation can be analyzed, in a conservative manner,
under the form of a functional inequality, using a classic
analysis result, the Halanay inequality (Halanay (1966);
Liu et al. (2011)). In its common form, the Halanay
inequality addresses the following problem

ẋ(t) ≤ −ax(t) + bmaxxt, t ≥ 0

By extending it to equations of the form

ẋ(t) ≤ −ax(t) + bmaxxt + c exp(−γt), t ≥ 0

in higher dimensions (Bresch-Pietri et al. (2014)) one
can formulate a small-gain theorem yielding a desirable
conclusion: if the closed-loop gain K appearing in the
prediction control equation (7) is sufficiently small, then
the system is asymptotically stable.

4. UNCERTAIN DELAYS IN GEOGRAPHICALLY
DISTRIBUTED IT SYSTEMS

We now present an example where the delay is uncer-
tain. Industrial information technology (IT) have steadily
grown and become ubiquitous over the last decades. Bene-
fiting from this trend, data-based monitoring of processes
has become considerably easier. Indeed, IT has enabled the
availability of massive streams of data enabling sophisti-
cated data analysis. However, the true situation is not that
straightforward. There exists a serious and intrinsic limita-
tion of IT that has been, so far, underestimated: erroneous
dating of data. The errors stem from mis-synchronisation
of the various components of the IT system.

Numerous solutions are usually implemented to mitigate
the sources of mis-synchronisation. The most widely used
solution is synchronisation of clocks across the IT network
which is supposed to grant a unique time-reference shared
by the various subsystems. Unfortunately, these synchro-
nization procedures are built on assumptions that are im-
possible to guarantee, strictly speaking, and synchronisa-
tion can not be achieved with an arbitrary accuracy (Noble
(2012)) 5 .

5 For example, in the state-of-the-art NTP synchronization algo-
rithm, synchronization is only correct when both the incoming and
outgoing routes between the client (the computer to be synchronized)
and the server (considered as reference) have symmetrical nominal
delay. Otherwise, the synchronization has a systematic bias of ∆/2
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Fig. 5. Detection of leaks on a pipeline

In the general context of industrial process control (Luy-
ben et al. (1998)), the devices needing synchronisation
are in a very large number: e.g. for a refinery or a pro-
duction field, at least hundreds of computers and tens of
thousands of sensors are under consideration. The nature
and the quality of the network employed has also a great
importance. For example, in the quickly evolving “digital
oilfield” applications (see e.g. Perrons (2010)), networks
are composed of various types of connections (Ethernet,
Wireless, Fiber, VSTA) with great variability in their
bandwidth and latency.

For these reasons, relatively large mis-synchronisation of
data is very common. A natural question is to determine
whether mis-synchronisation is large enough to cause any
problem. More precisely and quantitatively, one can for-
mulate the following: what is the cost of working with
imprecisely dated measurements?

To try to answer this question, we consider two simple ap-
plications, putting into play basic monitoring applications.
We refer the interested reader to Petit (2015); Magnis and
Petit (2013) for more details.

4.1 Bulk flow monitoring

Consider a pipeline that is monitored to detect leaks
((Dudek (2005); API (1995)). The situation is pictured
in Figure 5. To achieve the monitoring (see Figure 6), the
inlet an outlet of the transport pipe are equipped with
flow meters. These devices sample the flow variable and
communicate the data to a centralized system (SCADA)
which applies a time stamping at the reception. Due to
communication delays and their variability, the data that
is available at the SCADA level is not consistent, because
the flow measurements are not synchronous, although they
may appear as such in the historian database, if they
are received simultaneously. One could imagine that the
solution would be to timestamp the data at emission (i.e.
at the DAD level). However, there is no guarantee that the
internal clocks of the DAD are synchronized. In practice,
clocks are not synchronised 6 .

Model and state-of-the art monitoring system The usual
technique employed for detecting the leaks consists in
formulating a mass balance equation (Begovich et al.

where ∆ is the difference between the forward and backward travel
times.
6 We refer the interested reader to the introductory discussion on
the flaws of NTP synchronisation algorithm and the weakness of the
signals received from atomic clocks.

SCADA

DAD
I

DAD
O

Fig. 6. Bulk-flow monitoring

(2007); Fraden (2010); Geiger (2006)). Note q the inlet
flow-rate, λq the outlet flow-rate, with λ ∈ (0, 1] which
is unknown. The loss factor is 1 − λ (λ = 1 corresponds
to a no loss situation). The two DADs produce samples
of the flow-rates (we note ∆t the sample time), which are
corrupted with noises

yI [i] = q(i∆t) + ni, yO[i] = λq(i∆t) + n′i
With this modelling, an Imbalance estimator over a time-
window [0, T ] is, simply,

b̂ = ∆t

∑
i yI [i]− yO[i]∫ T

0
q(t)dt

Neglecting numerical integration error, we have:

b̂ = 1− λ+ noise

Then a simple detection algorithm is to define the alarm
as follows

b̂ ≥ b∗: loss-alarm

b̂ < b∗: no loss-alarm

The threshold b∗ is the only parameter of this algorithm.

A priori bound without dating uncertainty From infor-
mation theory, it is possible to derive a lower bound on
the variance of estimators of the parameter λ. For this, a
particular stochastic setup is considered, without loss of
generality.

Classically, the Cramér-Rao bound (see Frieden (2004))
expresses a lower-bound on the variance of any unbiased
estimator of λ obtained from a given set of measurements
X distributed according to a known probability density
function.

Assuming a large number of samples are available and
considering the limit case ∆t→ 0, one deduces the handy
formula

Var(λ̂) ≥ R′

‖q‖22
(8)

where ‖q‖22 =
∫ T

0
q(τ)2dτ , for [0, T ] covering all the

sample times, and R′ is the power spectral density of the
measurement noise corrupting the value of the data.

A priori bound with dating uncertainty Now, to account
for dating uncertainty, we introduce noise in the sampling
instants. Straightforwardly, we consider

yI [i] = q(i∆t) + ni, yO[i] = λq(i∆t+ wi) + n′i
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with wi is a random value.

To quantitatively study the impact of the uncertainty, the
following stochastic modeling (see Magnis and Petit (2013)
for details) can be introduced. The dating uncertainties wi

are independent identically distributed centered Gaussian
variables, and the overall noise is Gaussian and centered.
In principles, this allows one to perform explicit computa-
tions for the probability law of accurately detecting losses
and generating false alarms.

The uncertainties creates ambiguity which grows with the
variance of w. Note (σw)2 = Rw/∆t the variance of the
centered Gaussian noise w. Developing (at first order)

yO[i] = λq(i∆t) + λwiq̇(i∆t) + n′i
Then, for small values of σw, the dominant term in the
expansion of the variance (in powers of σw) is, using a
convenient limit ∆t→ 0

Var(λ̂) ≥ R′

‖q‖22
+Rwλ

2 ‖qq̇‖
2
2

‖q‖42
(9)

where ‖q‖22 =
∫ T

0
q(τ)2dτ , ‖qq̇‖22 =

∫ T

0
q(τ)2q̇(τ)2dτ , for

[0, T ] covering all the sample times. Interestingly, (9) can
be compared to (8), stressing the additional error due
to dating uncertainty. If the signal q is constant, then
the second factor is zero. Dating uncertainty is negligible.
Otherwise, this factor can overwhelm the first (noise)
factor.

Application example Under the assumption Rw <
∆t3/γ2 (see Petit (2015) for details why this limits inter-
lacing of data). We now consider a periodic signal q(t) =
1 + 1

2 sin(2πNt) where N is a given frequency. For any
setup, there exists a critical frequency above which the er-
ror due to noise is overwhelmed by the error due to the mis-
synchronisation as computed in (9). Intuitively, the higher
N , the higher the sensitivity to dating uncertainty. Indeed,
for a time horizon [0, T ], one has q̇(t) = πN cos(2πNt)

which shows that ‖qq̇‖22 is an increasing function of N .

When the variance of w is increased, the contribution
of dating uncertainty to the variance in the Cramér-Rao
bound is dominant. This is clear from (9). This can be
observed in Table 1. Typically, this is the case when
approx. 0.2% of the dating uncertainty is larger than ∆t
in absolute value (here ∆t = 0.01, N = 14). Signals are
reported in Figure 7.

4.2 Allocation factor: Data Validation and Reconciliation

The second monitoring application that we wish to discuss
stresses the difficulties of operating geographically dis-
tributed IT systems (see Préveral et al. (2014) for more de-
tails). A daily task that production engineers must perform
in the oil industry is Data Validation and Reconciliation
(DVR). After having gathered production data consisting
in redundant real-time measurements of flow-rates (and
possibly pressures, temperatures) from sensors placed in
various locations in the production networks, the task
consists in producing best estimates of the production of
each well, by an analysis of the data and their comparison
through mass balance equations. Determining each well
production level is important for hydrocarbon accounting,
to detect possible production network leaks, and very

400 405 410 415 420 425 430 435 440 445

0.4

0.6

0.8

1

1.2

1.4

1.6

signals

samples

 

 
true value
noisy true value
measured

Fig. 7. Signals for which dating uncertainty is causing as
much error on the loss detection as measurement noise

importantly, to validate geophysics studies modeling the
mid-term or long-term behavior or the producing reservoir.
In theory, this task boils down to a linear data analysis
problem, as is shown below.

A case study: production network For a given production
network, the DVR problem can be simply modeled as
follows (in its simplest form). First, one shall partition
the flow-rates as

x =

(
xm
xu

)
where xm are measured flow-rates, and xu are unmea-
sured flow-rates. From conservation principles (material
balance), one has

Ax = 0 (10)

where A is a network representation matrix (each of its
elements is 0, 1 or -1).

Then, by factoring the material balance (10) as

Amxm +Auxu = 0

and by introducing some uncertainty to account for mea-
surement noise

y = xm + e

where e is a zero-mean (un-correlated) Gaussian noise of
standard deviation σ, the DVR can be reformulated as the
following constrained optimization problem

min
x

s.t. Ax = 0

∑
i

(
yi − xi
σi

)2

(11)

Using the QR decomposition

Au = QR = (Q1 Q2 )

(
R
0

)
Π

and noting
S = QT

2 Am, Σ = diag(σ)

in the so-called observable case (Narasimhan and Jordache
(1999)), the solution to the DVR (11) are the estimates
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% outside [−∆t,∆t] error due to noise error due to dating Cramér-Rao bound

31.7 9.4e-06 86.1e-06 95.5e-06
13.3 9.4e-06 38.3e-06 47.7e-06
4.5 9.4e-06 21.5e-06 30.9e-06
1.2 9.4e-06 14.5e-06 23.2e-06
0.3 9.4e-06 9.5e-06 18.9e-06

0.04 9.4e-06 7.0e-06 16.4e-06
0.0 9.4e-06 5.4e-06 14.8e-06

Table 1. Error Variance due to dating uncertainty can overwhelm noise

Fig. 9. Allocation factor

x̂m = y − ΣST (SΣST )−1Sy

x̂u = −Π−1R−1QT
1 Amx̂m

which are unbiased normally distributed estimates. In de-
tails, x̂m is called the reconciliation of measured variables,
and x̂u is the coaptation for unmeasured variables.

Considering the network pictured in Figure 8, simulation
data have been treated in a DVR scenario. The sensors
have various level of uncertainty. For example Well 5 has
a Multiphasic Flow Meter while two export stations are
measured accurately. Other sensors are deployed, provid-
ing mid-to-large uncertainty measurements.

Several mis-synchronisation have been introduced in the
data. Typical synchronisation errors due to heteroge-
neous databases are introduced. Some flow-rates are down-
sampled and averaged to daily values, which also intro-
duces some lag. Delays are present on flow-rate measure-
ments.

Averaged values of individual well flow-rates are consistent
with true means, but produce false warnings. On the
other hand, the key production indicator which is the
allocation factor (ratio of total well flow estimate to
total measured bulk/fiscal flow) is wrongly estimated (see
Figure 9). Instead of the true value which kindly oscillates
in the vicinity of 1, spurious oscillations appear in the
reconstructed value. Reality is much smoother than DVR
estimates suggest. The spurious oscillations are due to mis-
synchronisation of data produced by the IT system.

5. NON-CAUSALITY OF COMMUNICATION:
REPEATER SYSTEM

We end this panorama with a system subjected to a non-
causal delay. To communicate data in very adverse envi-
ronments, (such as inside an oil well), repeaters can be used
to overcome obstructing medium features or to increase
the range. Often, data is used to monitor or to control
downhole production or operations (drilling), which re-
veals quite a challenge in view of available communication
capabilities. Among the limiting factor are bandwith and
delay.

To understand better the issues raised by this kind of
communication technologies, let us consider a drilling
setup, under a simplified form. Downhole measurement
are to be transmitted to the surface to determine relevant
control actions. Cutting is realized at the bottom of
the well thanks to the rotation of a cutting device and
weight on bit. Both variables are controlled from the
surface, using an electromechanical transmission and a
counterweight. The rotation speed and the weight on bit
are governed by complex dynamical equations. Assume
that these are perfectly known. Then, a closed-loop control
is necessary to achieve good tracking of transient and
disturbance rejection Aarsnes et al. (2014); Di Meglio et al.
(2014).

Bottom-hole information are transmitted to the surface
using a collection of repeaters, see Figure 10. The medium
through which waves propagate is the metal of the
rods. Damping results from interaction with surrounding
medium (mud, oil, rocks, cuttings). The repeaters are used
to cancel the negative effects of damping of the transmitted
signal. In details, the very narrow bandwidth and fault of
transmission imply that information is not transmitted to
the surface in a straightforward manner, from repeater 1 to
repeater 2, and so on. Rather each packet of data follows
a complex path, consisting of leapfrogs (from repeater 4
to repeater 6 for example). As a result, some data will be
transmitted to the surface faster than others. Some will
eventually take a long time to be transmitted. To illustrate
this, we report simulation of delay variations in Figure 11.
As appears, the condition Ḋ < 1 is violated on several
occasions. The interested reader can refer to Depouhon
and Detournay (2014); Di Meglio and Aarsnes (2015) for
a comprehensive model of the drilling/cutting process at
stake.
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variables. Ph.D. thesis, École des Mines de Paris.
Begovich, O., Navarro, A., Sánchez, E.N., and Besançon,
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Sinègre, L., Petit, N., and Ménégatti, P. (2005). Dis-
tributed delay model for density wave dynamics in gas
lifted wells. In Proc. of the 44th IEEE Conf. on Deci-
sion and Control, and the European Control Conference
2005.

Smith, O.J.M. (1958). Closer control of loops with dead
time. Chemical Engineering Progress, 53(5), 217–219.

IFAC Oilfield 2015
May 27-29, 2015

Copyright © 2015, IFAC 76


