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Abstract— In this paper, we investigate the benefits of consid-
ering advanced modeling of engine and after-treatment system
(3-way catalyst) in the design of Energy Management System
(EMS) for a parallel Hybrid-Electric light-duty Vehicle (HEV)
(passenger car with gasoline engine). The evaluation is based
on a comparative study of optimal control problems formulated
using three distinct levels of model complexity. Starting with
a single state dynamics (battery state-of-charge), successively,
we consider the engine temperature and the 3-way catalyst
temperature, yielding increased complexity. As is shown, the
increased complexity brings only little improvement in fuel
economy and emissions reduction. We provide quantitative
results to assess this observation.

I. INTRODUCTION

As is largely acknowledged, the Hybrid Electric Vehicle
(HEV) technology is a major solution to reduce fuel con-
sumption and pollutant emissions of passenger cars. Having
two on-board energy sources provides a valuable degree of
flexibility in the power generation. To handle this degree of
freedom and coordinate the components of the power-train
in an efficient manner, Energy Management Systems (EMSs)
are used [6].

Common EMS are mostly based on heuristic considera-
tions inspired by a priori knowledge of the behavior and
the efficiency of the propulsion system [3], [4], [5], [12].
Lately, in an attempt to reach maximal levels of performance,
optimization-based EMS have been introduced and studied
[12], [15], [18], [20]. These strategies define a cost function
to be minimized by a dynamical system representing the
vehicle. For similar time horizons and driving conditions,
various objectives and vehicle modeling levels can be con-
sidered. They result into distinct Optimal Control Problems
(OCPs). Once solved, each OCP gives an optimal control
strategy, to which corresponds an optimal cost value. The
intrinsic difficulty of solving OCP in real time with guar-
anteed convergence and levels of performance has so far
discarded them as true candidates for becoming real time
EMS. However, should the complexity be alleviated, they
would represent an appealing solution. A possible way to
tame down the difficulty is to simplify OCPs formulations.
Considering that more complex OCPs are usually more diffi-
cult to solve numerically and computationally more intense,
some trade-off between optimality and model complexity can
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be sought. In practice, an easy to compute and acceptably
suboptimal solution is much more desirable than an opti-
mal one characterized by an almost intractable OCP. This
question of choosing the right level of modeling has been
considered earlier. Various approaches from the literature
and their results are summarized in Table I (upper part). To
understand our aim in this paper, we now detail them, and
list the employed state variables. To allow fair comparisons,
we have reproduced the algorithms exposed in the literature
and implemented them for one single example (detailed in
this article).

In the simplest approaches, the battery State Of Charge
(SOC), denoted by ξ, is usually the only state variable
under consideration. Fuel consumption is the cost function.
A final constraint on the SOC is introduced to reflect charge-
sustaining (final SOC equals initial SOC) or charge-depleting
operations (final SOC is nearly zero) [11], [12], [21]. The
results obtained with one such EMS are reported in line (a)
of Table I. Its consumption and emissions level will serve as
references to the study conducted here.

Recent works have aimed at extending such simple opti-
mization problems to consider new cost functions (pollutant
emission, battery aging or any combination thereof) and
additional state variables (engine, battery and the 3 way-
catalyst temperatures) [9], [13], [19], [22]. From engine
modeling viewpoint, engine temperature θe is an important
factor [7], influencing both fuel consumption and pollutant
emissions. This is particularly true for HEVs as the engine
is subject to stop-start phases, and its temperature θe is not
constant. However, several studies [9], [22] and [23] have
suggested that the engine temperature could be eliminated
from the state space, as it has a negligible influence on
the results observed with EMS minimizing fuel consumption
(the benefit of including engine temperature in term of fuel
consumption is less than 0.5% for the systems studied in [9]
and [23]). A theoretical justification of these results, reported
in line (b) of Table I, are given in [10] based on regular
perturbations in optimal control problems.

In the same spirit, the 3 way-catalyst temperature θc is also
a key factor influencing pollutant emissions, as the catalyst
is activated only after a certain threshold temperature is
reached, while its efficiency is relatively poor at low tempera-
tures [8], [11], [13]. However, only few works have included
θc in the calculation of an EMS aiming at minimizing a
trade-off between fuel consumption and pollutant emissions.
In [2], [11] and [21], Pontryagin Minimum Principle (PMP)
based optimization techniques including 3 way-catalyst dy-
namics with emissions as objective was presented along with
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TABLE I
COMPARISON OF VARIOUS TECHNIQUES (FROM LITERATURE AND IN THIS CONTRIBUTION)

ξ: STATE OF CHARGE OF THE BATTERY, θe : ENGINE TEMPERATURE AND θc : CATALYST TEMPERATURE.
THE EXPRESSION Not satisfied MEANS THAT THE STRATEGY CAN NOT REDUCE CO EMISSION BELOW 1 g/km

Strategy State variables Min consumption in L/100km: CO ≤ 1 g/km References Optimal/Heuristic Name
(a) SOC ref ξ 4.82 (Not satisfied) [11], [12], [21] Optimal
(b) Engine temp ξ, θe 4.80 (Not satisfied) [9], [22], [23] Optimal
(c) Catalyst temp ξ, θc 5.02 [2], [13], [14] Heuristic (S4)
(d) Catalyst+ engine temp ξ, θe, θc 5.12 [11] Heuristic (S3)

(e) Contribution ξ, θe, θc 4.86 Optimal (S)
ξ, θc 4.91 Optimal (S1)
ξ 4.95 Optimal (S2)

numerical comparisons. In [13] and [14], the integration of
the catalyst temperature in a gasoline-HEV EMS has been
discussed using numerical comparisons between three con-
trol strategies, and, based on these numerical comparisons,
a simplified control model has been suggested. The results
are summarized in line (c) of Table I.

Finally, studies in [15] and [19] have quantified the impact
of the battery temperature θbat on the EMS aiming at
minimizing a trade-off between fuel consumption and battery
aging [20]. The comparison in [19] of single state (SOC only)
vs. two states (SOC+ θbat) solutions has shown that the first
solution is sufficient in most cases, except in the case of the
battery aging minimization.

This paper follows the path described above and extends
it to new cases: more general cost function and more
general choices of state variables. We consider a parallel
Hybrid Electric Vehicle (passenger car equipped with gaso-
line engine). This choice is not restrictive, as the presented
methodology could be transposed to other cases of interest.
Assuming the model of the vehicle and the driving conditions
are known, we address the following question: determine
the optimal EMS which minimizes a trade-off between fuel
consumption and pollutant emissions with SOC, engine and
3-way catalyst temperatures states. From the viewpoint of
model complexity, we wish to select the right level of mod-
eling to optimize the accuracy/complexity balance. A main
motivation of this comparative study is to find a simplified
model suitable for later real time implementation of OCP
resolution. To be relevant for application, this simplified
model should yield a reduction of CO emission below 1 g/km
(which corresponds to the European norm Euro 6) with an
acceptable extra fuel consumption.

In this article, we numerically show that the one state
model given by the last line of Table I is in fact an adequate
choice for the considered system, as it can be tuned to reach
this goal.

The paper is organized as follows. In Section II, a
mathematical control-oriented model taking into account the
influence of engine and catalyst temperatures on the fuel
consumption and pollutant emissions and the corresponding
optimization problem are presented. Two simplifications of
the general optimal control problem are given in Section III.
On this basis, a PMP solution and the employed numerical
method are described in Section IV. Finally, the obtained

numerical results are presented and discussed in Section V
and some conclusions and perspectives are drawn in Section
VI.

II. CONTROL-ORIENTED MODEL

The system under consideration is a parallel hybrid-
electric vehicle (HEV) equipped with gasoline engine and 3-
way catalyst system. The specification of this HEV are listed
in Table II. We assume that the vehicle follows a prescribed
(known in advance) driving cycle. In the simulation, the
NEDC cycle (see [6] and [23]) will serve as reference. Note
that similar analysis has been done for another driving cycles:
FUDS and FHDS.

A. Cost function

The cost function (1) to be minimized is a weighted sum
of fuel consumption and pollutant emissions rate (out of the
3-way catalyst), over a fixed time window corresponding to
a driving cycle of duration T .

J(u) =

∫ T

0

[(1− α)c(u, t, θe) + αmCO(u, t, θe, θc)]dt (1)

In (1), 0 ≤ α ≤ 1 is a weighting factor serving to adjust
the relative importance of the two contributions c(.) and
mCO(.), u is the control variable (the engine torque), θe is
the engine temperature, θc is the 3-way catalyst temperature.
The time variable t accounts for the dependence of the fuel
consumption and CO emissions on the engine speed, which
is a set path defined by the driving cycle to be tracked.

In (1), c(.) is the instantaneous fuel consumption, which
writes

c(u, t, θe) = ch(u, t)e(θe)

where the function ch(.) is the fuel consumption rate for
a warm engine. It is given by a quasi-steady map as a
function of the engine speed and torque, which is derived
from experimental engine tests (see Figure 4). The correction
factor e(.) of fuel consumption is a decreasing function of θe
and is always greater than or equal to one. It represents the
increase of friction and, as a consequence, the increase of fuel
injected per cycle under low engine temperature conditions
(see Figure 1). This function can be any decreasing (not
necessarily smooth) function with asymptotic value of 1. In
our case, the simple form reported in Figure 1 is extracted
from the engine control maps given by car makers.
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Fig. 1. The correction factor of fuel consumption e(θe)

Similarly, the emission rate of CO out of the 3-way
catalyst system mCO(.) is of the form

mCO(u, t, θe, θc) = mCO,h(u, t)eCO(θe)(1− ηCO(θc))

where mCO,h is the emission rate out of the engine when the
engine is warm, given by a quasi-steady map as a function
of engine speed and torque. The correction factor eCO(.) of
CO emissions is a decreasing function of θe and is always
greater or equal to one. ηCO is the 3-way catalyst conversion
efficiency for CO emissions (see Figure 2) which depends
on the catalyst temperature θc.
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Fig. 2. 3-way catalyst conversion efficiency ηCO for CO emission

B. Dynamics

Three state variables are considered in the OCP formula-
tions.

a) State Of Charge of the battery (ξ): The dynamics
of the SOC, which describes the capacity remaining in the
battery (expressed as a percentage of its nominal capacity)
is given by

ξ̇ = −Ib(u, t, ξ)
Q0

, ξ(0) = ξ0

where Ib is the battery current intensity and Q0 is the
nominal battery capacity. The current is given by [6], [15]

Ib(u, t, ξ) =
1

2Rb(ξ)

(
Uoc(ξ)−

√
U2
oc(ξ)− 4Rb(ξ)Pe(u, t)

)
where Pe is the electric power requested by the electric
motor, Rb is the internal resistance of the equivalent circuit
of the battery and Uoc is the equivalent open circuit voltage
of the battery. The general expressions of Rb and Uoc are
given in [6]. The value of Pe (which depends on the motor
speed and torque) is determined from the total energy balance
between the total power demand at the wheels Pd (which
is assumed to be known as the driving cycle is known in
advance) and the power provided by the engine Peng (which
depends on the engine speed and the engine torque) given
by:

Pd = Pe + Peng

One operational constraint for charge-sustaining HEVs
requires that the final value of ξ should be equal to a target
value, which is chosen here equal to the initial value

ξ(T ) = ξ(0) (2)

This final condition allows a fair comparison of the various
solutions by guaranteeing that they reach the same level
of battery energy at the end of the driving cycle. The
current Ib depends on ξ, but we neglect this dependency
as is commonly done in the literature [20]. In what follows,
we shall write the dynamics of ξ and consider the initial
condition ξ0 as

dξ

dt
= f(u, t), ξ(0) = ξ0 (3)

b) Engine Temperature (θe): The engine temperature
satisfies the first order non-linear (balance) differential equa-
tion [11]

Ce
dθe
dt

= Pth,e(u, t, θe)−Ge · (θe − θ0)− Pth,aux

where Ce is an equivalent thermal capacity, Ge is an equiv-
alent thermal conductivity, θ0 is the ambient temperature,
Pth,e is the sum of friction power dissipated into heat and
thermal power transferred from the engine to the coolant
(given by a look-up table), and Pth,aux is the thermal power
drained by the cabin heater (it is considered constant). The
model parameters have been identified using experimental
data. In what follows, we shall write the dynamics of θe
considering the initial condition θ0 as the ambient tempera-
ture as

dθe
dt

= g(u, t, θe), θe(0) = θ0 (4)
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c) 3-way catalyst temperature (θc): The third dynamics
describes the evolution of the (spatially averaged) catalyst
temperature θc. This lumped parameter is governed by a first
order non-linear differential equation [21]

Cc(θc) ·
dθc
dt

= Pth,ec − Pth,cr −Gc · (θc − θ0) + Pch,c

where Cc is an equivalent thermal capacity of the catalyst
depending on θc, Gc in an equivalent thermal conductivity
of the catalyst and θ0 is the ambient temperature.
Pch,c is the heat released by chemical reactions in the

after-treatment system. It depends on θe and θc [11]

Pch,c = −
∑
j

Hj · ηj(θc) ·mj,h(u, t)ej(θe)

where j = {CO,HC,NOx}, and Hj is the heat generated
by the oxidation of the jth pollutant.
Pth,ec is the heat flux from the engine to the after-

treatment system and Pth,cr is the heat flux outside of the
after-treatment system. These quantities are defined by

Pth,ec = mexh · cexh(θexh) · θexh
Pth,cr = mexh · cc(θc) · θc
mexh = c(u, t, θe) · (

AFRst

φ
+ 1)

where AFRst is the stoichiometric value of the air/fuel ratio
and φ is the equivalence ratio. cexh and cc are specific heat;
they are functions of the exhaust temperature θexh (which
is a (static) function of the engine speed and torque) and
the catalyst temperature θc respectively. In what follows, we
shall write the θc dynamics and consider the initial condition
θc(0) = θc,0 under the form

dθc
dt

= k(u, t, θe, θc), θc(0) = θc,0 (5)

An important remark is that the SOC dynamics (3) is in-
dependent from (θe, θc) and the θe dynamics is independent
from (θc, ξ).

C. Constraints

Without loss of generality, the control u is constrained to
belong to a functional space subset Uad ⊂ L∞[0, T ] defined

umin(t) ≤ u(t) ≤ umax(t), for almost all t ∈ [0, T ] (6)

where the bounds are determined by the driving conditions,
and physical limitations of the engine and the electric motor.

In summary, we can now formulate our OCP

(OCP ) min
u∈Uad

J(u) (7)

under the boundary constraint (2) and the dynamics (3, 4,
5). The corresponding optimal energy management strategy
is denoted by (S).

III. SIMPLIFICATIONS OF THE (OCP )

In this section, two simplified control strategies of the
strategy (S) described by the OCP (7), based on simplifying
the factors e(.), eCO(.) and ηCO(.), are presented. Our aim
is to find a reduced control model allowing us to get an
acceptable sub-optimal solution. This model will be used as
a benchmark to find a suitable real time strategy.

A. First simplification

The first simplification is to assume that the engine is
warm and its temperature θe is always greater than 70◦C.
This assumption is equivalent to neglecting the impact of θe
in the case of engine cold start. This can be formulated

eCO = 1, e = 1

The simplified cost is given by

J1(u) =

∫ T

0

[(1−α)ch(u, t)+αmCO,h(u, t)(1−ηCO(θc))]dt

As the cost is independent from θe, only the dynamics of
SOC and θc (2 states) have to be considered with the final
constraint (2). This simplified strategy is noted (S1).

B. Second simplification

An additional possibility to simplify the strategy (S1) is to
assume that the catalyst is never activated and its efficiency
ηCO is zero. The cost function, in this case, boils down to

J2(u) =

∫ T

0

[(1− α)ch(u, t) + αmCO,h(u, t)] dt

On the other hand, assuming that the catalyst is activated
and its efficiency is ηCO = 1 would give us a cost function
depending only on fuel consumption and no reduction of
pollutant emissions can be considered. That is why we have
chosen (conservatively) to take ηCO = 0. This simplification
is equivalent to minimize the CO emissions out of the engine.

As the fuel consumption and the pollutant emissions are
independent from θc, the number of states can be reduced
to 1. Only the dynamics of SOC, given by (3), has to
be considered with the final constraint (2). We note this
simplified strategy (S2).

Note that these simplified strategies are only used to
calculate the control trajectories as shown in Table IV. For
the comparison between the different obtained strategies, we
use the full model given by equations (1, 3, 4, 5).

IV. MATHEMATICAL AND NUMERICAL SOLVING

The OCP defined in (7) can be solved using numerous
methods. Classically, the solution considered here is based on
Pontryagin Minimum Principal (PMP) [1], [16]. We define
the Hamiltonian H by

H = L(u, t, θe, θc)+λf(u, t)+µg(u, t, θe)+ρk(u, t, θe, θc)

where λ, µ, ρ are the adjoint variables associated to ξ, θe
and θc, respectively and L is given by

L(u, t, θe, θc) = (1− α)c(u, t, θe) + αmCO(u, t, θe, θc).
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For a given control u∗, the adjoint states λ(t), µ(t) and ρ(t)
are defined by

dλ

dt
= −∂H

∂ξ
= 0,

dµ

dt
= −∂H

∂θe
,
dρ

dt
= −∂H

∂θc
(8)

with

µ(T ) = 0, ρ(T ) = 0 (9)

since the final temperatures θe(T ) and θc(T ) are free and
the final time T is fixed. On the other hand, we have no
boundary condition on λ since the final SOC is fixed.

From the PMP, if u∗ is an optimal control, then, for every
t, u∗(t) minimizes the Hamiltonian in the set defined by
(6) along the optimal states and corresponding adjoint states
trajectories

u∗ ∈ arg min
u∈Uad

H(u, t, θe, θc, λ, µ, ρ) (10)

Equations (3, 2, 8, 9, 10) constitute a two-point boundary
value problem (TPBVP), denoted by (Σ). The same method
can be used for the two strategies (S1) and (S2) and we
note (Σ1) and (Σ2) their associated TPBVPs, respectively.
To obtain conclusions on the relevance of the two levels of
simplification above, we follow the procedure below:
• Compute the solution u∗ for the optimal control prob-

lem (7) by solving the TPBVP (Σ).
• Compute optimal controls u∗1 and u∗2 for the simplified

strategies (S1) and (S2) by solving the associated TP-
BVPs (Σ1) and (Σ2) respectively.

• Compare J(u∗), J(u∗1) and J(u∗2). More than the
obvious observation that J(u∗) ≤ J(u∗1) ≤ J(u∗2), the
question that we will study numerically is: how great is
the difference between the three costs? The answer of
this question will help us to decide the most convenient
level of model complexity.

For the numerical solution of the TPBVPs, we have chosen
to use a shooting method [1], [17]. Classically, the idea of
this algorithm is to consider the initial conditions of the
adjoint states (λ0, µ0, ρ0) as unknown variables and the
vector function which associates [ξ(T ) − ξ(0)], µ(T ) and
ρ(T ) to (λ0, µ0, ρ0). Then, the problem is recast into finding
zeros of this function from R3 into R3. This is achieved here
using a Newton method implemented in the fsolve Matlab
function.

V. NUMERICAL RESULTS

Simulation results are obtained for a parallel hybrid elec-
tric vehicle equipped with gasoline engine and 3-way catalyst
system whose characteristics are listed in Table II. Look-up
tables for fuel consumption ch(.), CO emissions mCO,h(.)
and electric power Pe(.) of the motor, illustrated in Figures
3, 4 and 5 respectively, are derived from experimental tests.
The engine parameters are listed in Table III. According to

Figure 1, the correction factor e(.) and eCO(.) are of the
form {

−aθe + b, if θc ≤ θe ≤ θw
1, if θe > θw

TABLE II
VEHICLE CHARACTERISTICS

Vehicle weight 1932 kg
Engine max. power 92 kW
Motor max. power 42 kW

Battery capacity 5 Ah
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where a and b are positive constants. We note (a0, b0)
and (a1, b1) coefficients associated to e(θe) and eCO(θe)
respectively.
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For completeness of comparison, two additional heuristic
strategies based on optimization are considered.
• The first one, noted by (S3), is a pseudo solution of the

TPBVP (Σ) where we impose µ(t) ≡ ρ(t) ≡ 0 in the
Hamiltonian H (see [11]). The only unknown variable
λ is determined to satisfy the final constraint on ξ.

• The second strategy, noted by (S4), is the simplified
strategy suggested in [13] and [14]: one neglects the
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TABLE III
ENGINE PARAMETERS

Parameter Value
a0 0.0084 [◦C]−1

b0 1.59
a1 0.012 [◦C]−1

b1 1.88
Ce 105 J/kg
Ge 14.3 s−1

θw 70 ◦C
θc -30 ◦C

impact of the engine temperature on fuel consumption
and CO emissions (which is equivalent to assuming that
the engine is warm) and we set ρ(t) ≡ 0 in the Hamil-
tonian. The only unknown variable λ is determined to
satisfy the final constraint on ξ.

The calculation of the control trajectories for each strategy
defined above are summarized in Table IV.

The simulated engine and the catalyst temperatures tra-
jectories for α = 0.8 by using all the strategies described
before are reported in Figures 6 and 7 respectively. In Figure
6, one can note that the engine temperature trajectories
for the three strategies (S, S1, S2) remain close while
the engine temperature trajectories are a little bit far from
the optimal trajectory when the strategies (S3, S4) are
employed. From Figure 7, one can see that the optimal
control u∗ improves the catalyst efficiency by warming it up
promptly, which decreases the pollutant emissions out of the
catalyst. The price to pay for achieving this is an increased
fuel consumption due to an increased use of the engine.

Figure 8 reports the values of the cost function J obtained
by solving the previous optimal control problems for NEDC
driving cycle for various values of α ∈ [0, 0.8]. Note that
we have obtained similar results for 3 other driving cycles:
FUDS, FHDS, FTP. The two costs J(u∗1) and J(u∗2) are
close to the optimal value J(u∗) for the considered values
of α: the relative error between J(u∗) and J(u∗1) is less than

0 200 400 600 800 1000

20

30

40

50

60

70

80

Engine Temperature [°C]

Time [s]

(S
1
)

(S
2
)

(S)

(S
3
)

(S
4
)

Fig. 6. Histories of simulated engine temperature θe for α = 0.8.
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Fig. 7. Histories of simulated catalyst temperature θc for α = 0.8.

2% and the relative error between J(u∗) and J(u∗2) is less
than 4% for the whole range α ∈ [0, 0.8]. The difference
between the three values of the cost increases when α tends
to 1 (as more emphasis is put on on the minimization of CO
emissions).

Figure 9 details the variation of the fuel consumption
as a function of CO emissions for various values of α.
One can see that the five strategies allow to reduce the
CO emission below 1 g/km (which corresponds to the new
European norm Euro 6 for CO emissions) while the main
difference between them is in the fuel consumption value.
The solutions corresponding to the strategies (S), (S1) and
(S3) are very close in term of CO emissions reduction while
the strategies (S2, S4) are less efficient. If one desires to
reduce CO emissions further using strategies (S2, S4), one
has to increase the value of α (recall that, in general, when
the value of α in increased, more importance to CO emission
is given in the cost function).
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TABLE IV
CONTROL STRATEGIES DESCRIPTIONS

Strategy Number of state variables Control calculation Optimal/Heuristic
(S) 3 (ξ, θe, θc) u∗(t) = arg min

u∈Uad
[L(u, t, θe, θc) + λf(.) + µg(.) + ρk(.)]︸ ︷︷ ︸

H(u,t,θe,θc,λ,µ,ρ)

Optimal

(S1) 2 (ξ, θc) u∗1(t) = arg min
u∈Uad

[L(u, t, θe = θw, θc) + λf(.) + ρk(.)]︸ ︷︷ ︸
H(u,t,θe=θw,θc,λ,µ(t)=0,ρ)

Optimal

(S2) 1 (ξ) u∗2(t) = arg min
u∈Uad

L(u, t, θe = θw, θc = θc(0)) + λf(.)︸ ︷︷ ︸
H(u,t,θe=θw,θc=θc(0),λ,µ(t)=0,ρ(t)=0)

Optimal

(S3) 1 (ξ) u∗3(t) = arg min
u∈Uad

[L(u, t, θe, θc) + λf(.)]︸ ︷︷ ︸
H(u,t,θe,θc,λ,µ(t)≡0,ρ(t)≡0)

Heuristic

(S4) 1 (ξ) u∗4(t) = arg min
u∈Uad

[L(u, t, θe = θw, θc) + λf(.)]︸ ︷︷ ︸
H(u,t,θe=θw,θc,λ,µ(t)=0,ρ(t)≡0)

Heuristic
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Fig. 8. Cost function J as a function of α.

A main objective is to find a simple model allowing
to reduce CO emissions below 1 g/km with an acceptable
extra fuel consumption in exchange of ease of numerical
complexity. This simplified model could be used for real
time EMS calculation. From Figure 9, one can see that one
state models corresponding to the strategies (S2, S3, S4)
satisfy these requirements for α ≥ 0.8 while the difference
between the values of consumed fuel is negligible only for
S2.
• The strategy (S3) is far from the optimal fuel consump-

tion (the difference is more than 5%).
• The strategy (S4) is close to the optimal fuel consump-

tion (the sub- optimality is less than 2%).
• The strategy (S2) is better than the strategy (S4) sug-

gested in [13] and [14] as it gives a quasi-optimal fuel
consumption comparing to the optimal strategy.

Therefore, we deduce that one can use the one state
OCP strategy (S2) to generate a control which satisfies the
European norm Euro 6 for the CO emissions with a near
to optimal fuel consumption. This simplified model used in
this strategy will serve as a benchmark to find a suitable real
time energy management system. We can for example use

the ECMS as it is presented in the literature to solve this one
state problem.

The main idea of this article is to show how one can use
optimal control as a numerical tool to determine a trade-off
between model complexity and the optimality of the solution
for hybrid electric vehicles. The presented method is not
restrictive for the chosen system (parallel HEV with gasoline
engine and 3 way catalyst), as the methodology could be
transposed and adapted to more complicated cases.

VI. CONCLUSION

Usually, optimal control methods, when used on nonlinear
dynamics are considered as relatively complex methods,
which, in turn, as often discarded them from real time imple-
mentation. This is particularly true when on-board processing
power is limited, as well as memory space that could be used
to store pre-calculated initial solutions covering a wide-range
of needs and operating conditions. However, when used
off-line, they provide a fair methodology of comparisons
between modeling approaches and allow to determine a
trade-off between model complexity and optimality. This
is what has been done in this contribution, and the result
is that, for a HEV of parallel type equipped with gasoline
engine and 3 way catalyst, one can conclude that the simplest
model among all possible choices is accurate enough to
guarantee a good level of emission reduction (meeting Euro 6
requirements) while reaching a quasi-optimal fuel efficiency.
The Equivalent Consumption Minimization Strategy (ECMS)
can be used to solve this kind of problem in real time. An
experimental validation of the proposed solution is planned
and is the subject of current investigation.
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