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Abstract— This paper contains a result proving that a
predictor feedback controller can effectively yield asymptotic
convergence for a class of linear systems with input-dependent
delay. The delay is implicit and its model involves past values
of the input. It is representative of systems where transport
phenomena take place. This situation is frequent in the process
industry. The conditions on asymptotic stabilization require the
feedback gain to be small. Arguments of proof for this novel
result include general Halanay inequalities for delay differen-
tial equations and build on recent advances of backstepping
techniques for uncertain or varying delay systems.

I. INTRODUCTION

Numerous control systems involve a physical dead-time

which reveals troublesome in the design and tuning of

feedback control laws. In practice, such dead-time occur,

e.g., when sensors and actuators are not co-located. Prime

examples are processes involving transportation of material,

such as mixing processes for liquid or gaseous fluids, chem-

ical reactors [10], automotive engine and exhaust line [7],

heat collector plant [22], blending in liquid or solid networks

[6], and batch processes [20], to name a few. Remarkably,

in all these examples, the lag directly depends on the

control variable and the considered delay is inherently input-

dependent (see the example of the crushing-mill presented in

[21]).

Surprisingly, it seems that stabilization of such processes

with input-dependent time-delay in the input D(u) or D(ut),
where ut denotes past values over a finite horizon, has sel-

dom been theoretically studied. Rather, a widely considered

approach is to recast the delay dependence on the control,

e.g. by modeling this dependence as D(u) ≈ D(t) (or even

by a constant average value D) and by asking the controller

to deal with a certain level of unstructured model variability.

Predictor-based control strategies (see [23], [1], [15]),

which are state-of-the-art for systems with constant input

time-delays (see for instance [8], [12], [16], [3], [17] or

[21] and the reference therein) are still not of general use

for time-varying delays. In [18] or, more recently, in [14],

a time-varying delay version of predictor-based control has

been presented. To compensate the input delay, the prediction

is calculated over a time window of which length matches

the value of the future delay. In other words, one needs to
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N. Petit is with the Centre Automatique et Systèmes, Unité
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predict the future variations of the delay. For example, this is

the approach followed in [24] for a time-varying delay, the

variations of which are provided by a given known model. It

has also been used in [2] for a state-dependent delay, where

variations are characterized by a careful prediction of the

system state.

Yet, when the delay depends on the input, things are

getting very involved. Determining the required prediction

horizon becomes an implicit issue, which may not be practi-

cally solvable nor even well-posed. This implicit nature is

caused by the reciprocal interactions between the control

(current and past) values and the delay, yielding a closed-

loop dependency.

In this paper, a prediction technique is also used. We blend

the previously described techniques and establish sufficient

conditions for asymptotic stabilization using a two-steps

methodology enabling to disrupt the implicit loop.

In a first move, we consider the input-dependency as a

particular type of time-variations. It enables then to use

a robust compensation result which has been obtained for

linear systems with time-varying input delay, using the

backstepping tools proposed in [13] for the analysis of input-

delay systems stability. Technically, this result guarantees

stabilization provided the delay variations are sufficiently

small. In a second step, a sufficient bound on the delay

variations is obtained by relating them to the control tracking

error, which is analyzed using the asymptotic convergence of

delay differential equations (DDE) (Halanay-type inequali-

ties [9]).

To the best of the authors’ knowledge, this connection be-

tween prediction-based control law and input-dependency of

the delay has not been studied earlier (except on preliminary

works for a scalar system studied by the authors in [4] ). The

result that we establish for a potentially unstable systems of

order n with a particular model of input-dependent delay is

the main contribution of the paper.

The considered integral relation defining the delay through

past values of the input is representative of a large class of

flow processes. For this class of systems robust compensation

is shown to be achievable, provided that that initial conditions

are close enough to equilibrium and that the feedback gain

is chosen accordingly.

The paper is organized as follows. In Section II, we

describe the problem under consideration. We design a

prediction-based controller in Section III. Sufficient con-

ditions for stabilization are derived through a proof of

convergence invoking Halanay-like inequalities arguments in

Section IV. Before providing directions of future work, we
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detail an illustrative example in Section V.

Notations and definitions

In the following, |.| stands for the usual Euclidean norm,

C0(S1,S2) denotes the set of continuous functions on the set

S1 with values into the set S2. The operator SatI stands for

the standard saturation operator onto the interval I.

For a given symmetric matrix, λ (.) and λ (.) stands

respectively for minimum and maximum eigenvalues.

xt refers to the function xt : s ∈ [−D,0] 7→ x(t + s) for a

given function x and D > 0.

For any bounded function k defined on [−D,0], a poly-

nomial function π
(

x(t1), . . . ,x(tn−2),
∫ tn

tn−1
k(t − s)x(s)ds

)

for

(t1, . . . , tn) ∈ [t −D, t]n is denoted π(xt).
A polynomial function π in the variables (x1, . . . ,xn,xn+1)

is said to be at least quadratic in x1, . . . ,xn iff, for any given

xn+1, the corresponding polynomial function πxn+1
defined

as

πxn+1
(x1, . . . ,xn) =π(x1, . . . ,xn,xn+1)

has no terms of order 0 or 1, e.g. π = x2
1 + x1x2x3 and

π = x2x1 + x3x2
1 are both at least quadratic in (x1,x2) while

π = x3 + x3x2
2 is not.

II. PROBLEM STATEMENT

Consider the following potentially unstable linear time-

invariant plant1 sketched in Fig. 1

x(n)+an−1x(n−1)+ . . .+a1ẋ+a0x = b0φ(t −D(t)) (1)

driven by a delayed input, where the varying delay D(t) is

implicitly defined in terms of the input history by
∫ t

t−D(t)
φ(s)ds = 1 with φ(t) = Sat[u,+∞[(u(t)) , u > 0

(2)

Physically, the integral equation (2) corresponds to a Plug-

Flow assumption [19] in a transport phenomenon and appears

in a large class of applications where φ is a (normalized) flow

rate. Because φ ≥ u > 0, this transport delay is well defined2

and is upper-bounded: D(t)≤ D
∆
= 1/u , t ≥ 0. In particular,

as D 7→ ∫ t
t−D φ(s)ds is strictly increasing, it is invertible and

the delay can be calculated and is therefore assumed to be

known in the following (see Section V for details).

The control objective is to stabilize the plant over any

equilibrium point such that xr = b0/a0ur with ur ≥ u. For this

purpose, a predictor-based feedback law will be employed

here.

With this aim in view, we first formulate a state-space

representation of this system as






Ẋ = AX(t)+Bφ(t −D(t))
∫ t

t−D(t)
φ(s)ds = 1 with φ(t) = Sat[u,+∞[(u(t))

1Potential existing zeros can still be handled by a suitable aforementioned
choice of state-space representation and of the output matrix.

2The delay is positive and, besides, its derivative can be expressed as

Ḋ = 1− φ(t)
φ(t−D) < 1 which guarantees strict causality.

where

A =








0 1 0
...

. . .

0 0 1

−a0 −a1 . . . −an−1








, B =








0
...

0

b0








(3)

For sake of clarity, in the following we assume that the

system state X is fully measured. Extension to observable

systems could be considered in future works. To construct a

prediction-based control law, we use the following theorem,

a proof of which is given in [4] and [5].

Theorem 1: Consider the closed-loop single input system

Ẋ(t) =AX(t)+Bu(t −D(t)) (4a)

u(t) =K

[

eAD(t)X(t)+
∫ t

t−D(t)
eA(t−s)Bu(s)ds

]

(4b)

where X ∈R
n, u ∈R, K is chosen such that A+BK is Hur-

witz and D : R+ → [0,D] is a time-differentiable function.

There exists ∆∗(|K|) ∈]0;1[ such that, provided

∀t ≥ 0 , |Ḋ(t)|< ∆∗(|K|) , (5)

the plant (4a) exponentially converges to the origin.

The prediction controller (4b) is a natural extension from

the case of constant delay. It forecasts values of the state

over a time window of varying length D(t). Of course,

exact compensation of the delay is not achieved with this

controller. To do so, one would need to consider a time

window of which length would exactly match the value of

the future delay, as it is made in [18] and [14]. In details,

defining η(t) = t−D(t) and assuming that its inverse exists3,

exact delay-compensation is obtained with the feedback law

U(t) = KX(η−1(t)). Yet, implementing this relation requires

to predict the future variation of the delay via η−1(t), which

is not practically achievable for an input-varying delay.

Equation (5) can be interpreted as a condition for robust

delay compensation achievement4. The spirit of this condi-

tion is that, if the delay varies sufficiently slowly, its current

value D(t) used for prediction remains close enough to its

future values, and the corresponding prediction is accurate

enough to guarantee the stabilization of the plant through the

feedback loop.

We now focus on an alternative sufficient condition guar-

anteeing (5) when the delay varies according to the integral

relation (2). For practical control design, this new condition

bears on the control gain and the initial conditions.

3which is the case if Ḋ < 1
4Interestingly, a similar condition is often stated in Linear Matrix Inequal-

ity approaches, such as [25] for example, where the delay is also assumed
to be time-differentiable.
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Process
Transport delay∫
t

t−D(t)
φ(s)ds = 1

Saturation operator
Sat[u,+∞[

u(t) φ(t) φ(t−D)

Fig. 1. The addressed problem, where the input is delayed by a transport delay which is input-varying.

III. CONTROL DESIGN

Theorem 2: Consider the closed-loop system






Ẋ(t) = AX(t)+Bφ(t −D(t)) (6)
∫ t

t−D(t)
φ(s)ds = 1 with φ(t) = Sat[u,+∞[(u(t)) (7)

u(t) = ur +K

[

eAD(t)X(t)+
∫ t

t−D(t)
eA(t−s)Bφ(s)ds−X r

]

(8)

where A and B are defined in (3), K is such that A+BK

is Hurwitz, U is scalar, X r is the state equilibrium corre-

sponding to the original equilibrium xr of plant (1) and U r

is the corresponding (constant) reference control. Consider

the functional

Θ(t) =|X(t)−X r|+ max
s∈[t−D,t]

|u(s)−ur| (9)

Then, there exists θ : Rn 7→ R
⋆
+ such that is Θ(0) < θ(K)

the condition (5) is fulfilled and the plant exponentially

converges to X r.

This result has a relatively direct interpretation: the pre-

viously presented Theorem 1 requires the delay to vary

sufficiently slowly, while, on the other hand, the delay

variations implicitly depend on the control input through the

integral equation (2), with variations which aggressiveness is

scaled by the gain K. Then, restricting the input variations

by choosing the initial conditions close enough to the de-

sired equilibrium and in compliance with the feedback gain

magnitude seems like a natural requirement.

The behavior of the function θ with respect to K should

be investigated in future works. From the expression given in

(16), it would involve to study the solution of the Lyapunov

equation and the behavior of its eigenvalues with respect

to K. One could reasonably that θ(K)→ 0 while K →−∞

(as r(K) is expected in this case to tend to ∞). Therefore,

for given initial conditions, the magnitude of the feedback

gain should be chosen accordingly. For relatively large initial

conditions, this would imply to use a small feedback gain.

Therefore, this result can be interpreted as a small-gain

condition.

We now detail the proof of Theorem 2 .

IV. PROOF OF THEOREM 2 - HALANAY-LIKE

INEQUALITIES

Taking a time-derivative of (7) and defining the error

variable

ε
∆
=φ −ur

one gets, using φ ≥ u,

Ḋ(t) =1− ε(t)+ur

ε(t −D(t))+ur
≤ 2max |εt |

u

As a result, condition (5) is satisfied if

∀t ≥ 0 , max |εt |<
u∆∗(|K|)

2
(10)

This is the condition we now focus on. It yields to the

analysis of the dynamics of the variable ε . Before properly

starting this analysis, we recall and extend some well-known

stability results for DDE.

A. Preliminary results : extension of the Halanay inequality

for Delay Differential Equations of order n ≥ 1

We first recall the following result ([9], [11])5.

Lemma 1: (Halanay inequality) Consider a positive con-

tinuous real-valued function x such that, for some t0 ∈ R,

ẋ(t)≤−ax(t)+bmaxxt , t ≥ t0

with a ≥ b ≥ 0. Then, there exists γ ≥ 0 such that

∀t ≥ t0 , x(t)≤ maxxt0 e−γ(t−t0)

A straightforward extension of this lemma is stated in the

corollary below.

Corollary 1: Consider a delay differential equation of the

form
{

ẋ(t) + ax(t)+bh(t,xt) = 0 , t ≥ t0
xt0 = ψ ∈ C0([−D,0],R)

(11)

where h is a continuous functional satisfying, on an open

neighborhood Ω of the origin, the sup-norm relation

|h(t,xt)| ≤ max |xt | , xt : [−D̄,0]→ Ω (12)

Then, if the initial condition ψ has values into Ω and if

a ≥ b ≥ 0, then there exists γ ≥ 0 (γ = 0 if a = b and γ > 0

otherwise) such that every solution satisfies

∀t ≥ t0 , |x(t)| ≤ max |xt0 |e−γ(t−t0) (13)

Proof: A proof is this corollary can be found in [4].

Lemma 2: [stability of a nth order DDE] Let x be a

solution of the nth order DDE
{

x(n)+αn−1x(n−1)+ . . .+α0x = cℓ(t,xt , . . .x
(n−1)
t ) , t ≥ t0

Xt0 = ψ ∈ C0([−D,0],R) with |ψ| ∈ Ω

(14)

where the left-hand side of the differential equation defines

a polynomial which roots have only strictly negative real

parts, c > 0, ℓ is a continuous functional, Ω =]−ω,ω[ is

5More precisely, in [9], this result is stated for a > b > 0.
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a neighborhood of the origin included inside a second one

Ω0 =]−ω0,ω0[ on which ℓ satisfies the sup-norm relation

∀t ≥ t0 , |ℓ(t,xt , . . . ,x
(n−1)
t )| ≤ max |Xt |

with X = [x ẋ . . . x(n−1)]T , ω0 >
√

λ (P)ω > 0,

ω0 >
√

λ (P)ω > 0 and P the solution of the Lyapunov

equation associated to (14) for a given positive definite

matrix Q. Then, there exists cmax > 0 such that, for any

0 ≤ c < cmax, there exists γ ≥ 0 and r ≥ 1 (r = 1, cmax = α0

if n = 1) such that

∀t ≥ 0 , |X(t)| ≤ r max |Xt0 |e−γ(t−t0)

Proof: The idea is to use the scalar result of Corollary 1.

Define the scalar valued function m(t) = XT PX where P,

as defined in the Lemma, is the symmetric positive definite

matrix solution of the Lyapunov equation AT
0 P+PA0 =−Q,

for some given symmetric positive definite matrix Q and A0

the companion matrix

A0 =








0 1
...

. . .

0 1

−α0 −α1 . . . −αn−1








Taking a time-derivative of m, one can obtain

ṁ(t) =−XT (t)QX(t)+2X(t)T P








0
...

0

cℓ(t,xt , . . . ,x
(n−1)
t )








≤− λ (Q)

λ (P)
m(t)+2cλ (P)|X(t)||ℓ(t,xt , . . . ,x

(n−1)
t )|

Then,

ṁ(t)+
λ (Q)

λ (P)
m(t)≤2cλ (P)

√

λ (P)

√

m(t)|ℓ(t,xt , . . . ,x
(n−1)
t )|

Define a
∆
= λ (Q)

λ (P)
, b

∆
= 2c

λ (P)
λ (P) and

h(t,mt , . . . ,m
(n−1)
t )

∆
=
√

λ (P)
√

m(t)|ℓ|

which satisfies over the neighborhood Ω0

|h(t,mt , . . . ,m
(n−1)
t )| ≤

√

m(t)max
√

mt ≤ maxmt

Applying Corollary 1, one concludes that if mt0 has values

into Ω0 (which is the case as Xt0 has values inside Ω) and

if a > b then there exists γ > 0 such that

∀t ≥ t0 , m(t)≤ maxmt0 e−2γ(t−t0)

or

∀t ≥ t0 , |X(t)| ≤

√

λ (P)

λ (P)
max |Xt0 |e−γ(t−t0)

Finally, the condition a > b can be reformulated as

c < λ (P)λ (Q)

2λ (P)2
= cmax which concludes the proof.

B. Application to the dynamical equation of ε defined

through the predictor-based control law (8)

We now focus on the DDE governing ε , which is given

in the following lemma.

Lemma 3: Consider t0 ∈R and assume that the function φ
is unsaturated for t ≤ t0 (or equivalently that u(t)≥ u , t ≤ t0).

Then, the error variable ε = u − ur with u defined in (8)

satisfies the following differential equation for t ≤ t0

ε(n)+(an−1 +b0kn−1)ε
(n−1)+ . . .+(a0 +b0k0)ε

= π1

(

Ḋ, . . . ,D(n),εt , . . . ,ε
(n−1)
t ,

1

1+ Ḋ

)

(15)

where the constants [−k0 . . .− kn−1]
∆
= K and π1 is a poly-

nomial function which is at least quadratic in the variables

εt , . . . ,ε
(n−1)
t , Ḋ, . . . ,D(n).

Proof: For sake of clarity, the proof of this theorem is

given in Appendix.

Now that we are equipped with this last lemma, it is

possible to use Lemma 2 to guarantee that the stability

condition (10) holds.

Lemma 4: Consider the functional Θ defined in (9). Then,

there exists θ : Rn 7→ R
∗
+ such that, if Θ(0)< θ(K), then

∀t ≥ 0 , |ε(t)| ≤ min

{
u∆⋆(|K|)

2
,ur −u

}

which implies that condition (10) is fulfilled.

Proof: Assume for a moment that the function φ is

not saturated for t ≤ 0. Then, dynamics (15) holds and is

compliant with the assumptions of Lemma 2.

In details, first, the left-hand side of (15) is stable, as it

represents the last line of the Hurwitz companion matrix

A+BK. Second, by observing that

Ḋ =
ε(t −D)− ε(t)

ε(t −D)+ur

one can obtain by induction that, for m ≥ 1, D(m) is a

polynomial function in εt , . . . ,ε
(m−1)
t , 1

ε(t−D)+ur without terms

of order 0 or 1. Therefore, π1 is directly a polynomial

function of the variables εt , . . . ,ε
(n−1)
t , 1

1+Ḋ
, 1

ε(t−D)+ur , which

is at least quadratic in the variables εt , . . . ,ε
(n−1)
t . Finally,

define

cℓ(t,εt , . . . ,ε
(n−1)
t ) =π1

(

Ḋ, . . . ,D(n),εt , . . . ,ε
(n−1)
t ,

1

1+ Ḋ

)

Observing that

1

1+ Ḋ
=

ε(t −D)+ur

2ε(t −D)− ε(t)+ur

and because π1 is at least quadratic, it is possible to properly

define a neighborhood of the origin Ω = [−ω,ω] such that
∣
∣
∣π1

(

εt , . . . ,ε
(n−1)
t

)∣
∣
∣≤ cmax max |Et |
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for |Et | having values into Ω (and such that 1+ Ḋ(t)> 0).

This neighborhood depends on the functional ℓ and on

the constant cmax and therefore on the feedback gain K.

Consequently, for Et([−D,0])⊂ Ω, one gets
∣
∣
∣cℓ(t,εt , . . . ,ε

(n−1)
t )

∣
∣
∣≤ cmax max |Et |

Therefore, Lemma 2 guarantees the existence of r(K) > 0

and γ ≥ 0 such that

∀t ≥ 0 , |E(t)| ≤ r(K)max |E0|e−γt

as long as the actuator φ is not saturated and as (15) applies.

Yet, one can observe that a sufficient condition to make sure

that the actuator is not saturated is |ε(t)| ≤ ur − u , t ≥ 0.

Therefore, by choosing

max |E0|

≤ 1

r(K)
min

{
u∆∗(|K|)

2
,ur −u,ω(K),ω(K)

}

∆
= θ(K)

(16)

one can ensure together that this condition is fulfilled for any

t ≥ 0, that the initial condition lies in the neighborhood Ω

and that |E(t)| ≤ u∆∗(|K|)
2

, t ≥ 0. In particular, the condition

(10) is also fulfilled.

Finally, the choice max |E0| ≤ θ(K) can be expressed in

terms of Θ. This gives the conclusion.

The proof of Theorem 2 directly follows from Lemma 4.

V. ILLUSTRATIVE EXAMPLE

In this section, for illustration purposes, we consider the

following simple unstable second-order plant






ẍ− ẋ+ x = φ(t −D(t))
∫ t

t−D(t)
φ(s)ds = 1 , φ(t) = Sat[0.01,+∞[(u(t))

Following the proposed methodology, we introduce the dy-

namics matrices

A =

(
0 1

−1 1

)

, B =

(
0

1

)

and implement the control law defined through (7)-(8).

Simulation results for two different feedback gains, re-

spectively K = [−1− 2] and K = [−3− 1.5] (both yielding

a Hurwitz matrix A + BK), are pictured in Fig.2. Initial

conditions are similar, with x(0) = 1, ẋ(0) = 1 and u(t) = 1 ,
t ∈ [−D,0], resulting into an initial delay D(0)= 1 the effects

of which can be noticed on the beginning of the state

response. The control aims at stabilizing the plant toward

the target equilibrium xr = 1.1.

The current delay is calculated by a simple procedure,

exploiting the fact that D 7→ ∫ t
t−D φ(s)ds is a K∞ class

function. Indeed, numerically, one can evaluate the value of

this function for increasing delay values, starting with D= 0,

until reaching the value 1 (which exists as φ is strictly lower-

bounded).

0 1 2 3 4 5 6 7 8
0.8

1

1.2

1.4

1.6

1.8
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2.2

2.4

2.6
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Time [s]
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Fig. 2. Simulation results for two feedback gains, respectively K =
[−1− 2] and K = [−3− 1.5] : the state x (top), the control (center) and
the corresponding delay (bottom).

Clearly, one can observe that the first controller setting

achieves the goal, while the second one does not. This can

be reasonably interpreted as a consequence of the gain mag-

nitude as, for the first one, |K|= 2.24 while, for the second

one, |K|= 3.35. Correspondingly, in Fig.2, the variations of

the delay for the second gain setting are larger and larger,

which causes the instability.

For comparison, a simple proportional controller with the

same feedback gain K = [−1 − 2] was implemented but

does not achieve stabilization and yields the same kind of

instability. For sake of readability of the figures, results are

not reported here. Yet, this fact enhances the interest of a

prediction-based control design.
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VI. CONCLUSION

In this paper, we have addressed the problem of robust

delay compensation of a linear system driven by a delayed

input, for a particular class of input-dependent delay (through

an integral relation), representative of a large number of

processes involving transport of material. The proposed

approach is based on a two-steps methodology, which, first,

requires the delay variations to be bounded and, in turn,

relates these variations to input fluctuations. The obtained

sufficient conditions put limits on the initial conditions in

accordance with the feedback gain magnitude.

A natural extension of this work would be to study the

compliance of the considered framework with state observer

design. Other delay defining equations could be considered

as-well. Besides, quantitative comparison of the practical

performances of the proposed approach with the ones of a

prediction-based controller using the (constant) final refer-

ence delay D= 1/ur is the natural next step of this approach.

APPENDIX

A. Proof of Lemma 3

Before starting the actual proof, we establish preliminary

results. In the following, we note Z = X − X r the state

tracking error which satisfies, following (6) and (8),






Ż(t) = AZ(t)+Bε(t −D(t)) (17)

ε(t) = K

[

eAD(t)Z(t)+
∫ t

t−D(t)
eA(t−s)Bε(s)ds

]

(18)

when the actuator is not saturated over the whole time

interval [t −D(t), t].

1) Preliminary results:

Lemma 5: If the actuator is unsaturated over the interval

[t −D(t), t] , the control variable stated in (8) satisfies the

following differential equations

for 1 ≤ m ≤ n , ε(m)−
m

∑
l=1

KAl−1Bε(m−l) = f m
Z (t)+ f m

ε (t)

+(1+ Ḋ)mKeADAmZ +K

∫ t

t−D
AmeA(t−s)Bε(s)ds (19)

with






f 1
Z (t) = 0 and for 2 ≤ m ≤ n

f m
Z (t) =

d[(1+ Ḋ)m−1]

dt
KeADAm−1Z +

d

dt

(
f m−1
Z (t)

)







f 1
ε (t) = ḊKeADBε(t −D) and for 2 ≤ m ≤ n

f m
ε (t) =

d

dt

(
f m−1
ε (t)

)

+
[
(1+ Ḋ)m−1 − (1− Ḋ)

]
ε(t −D)KeADAm−1B

Proof: The result is constructively obtained by induc-

tion and successive substitutions.

Initial step: one directly gets, taking a time-derivative of the

control law (18) and using (17),

ε̇(t) =KBε(t)+(1+ Ḋ)KeADAZ +

= f 1
ε (t)

︷ ︸︸ ︷

ḊKeADBε(t −D)+

=0
︷ ︸︸ ︷

f 1
Z (t)

+K

∫ t

t−D
AeA(t−s)Bε(s)ds

which gives (19) for m = 1.

Induction: assume that the property is true for a given m ≥ 1.

We now show that it also holds for m+ 1. Taking a time-

derivative of (19) for some m ≥ 1 yields

ε(m+1)−
m

∑
l=1

KAl−1Bε(m+1−l) =
d

dt
( f m

ε (t))+

d

dt
( f m

Z (t))+
d(1+ Ḋ)m

dt
KeADAmZ

︸ ︷︷ ︸

= f m+1
Z (t)

+Ḋ(1+ Ḋ)mKeADAm+1Z

+(1+ Ḋ)mKeADAm [AZ +Bε(t −D)]+KAmBε(t)

− (1− Ḋ)KeADAmBε(t −D)+K

∫ t

t−D
Am+1eA(t−s)Bε(s)ds

Rearranging terms, one obtains (19) for m+ 1. This gives

the conclusion.

Further, the sequences ( f m
ε ) and ( f m

Z ) satisfy the following

properties.

Lemma 6: For 2 ≤ m ≤ n, f m
ε is a polynomial function

in εt , . . . ,ε
(m−1)
t , Ḋ, . . . ,D(m) without constant nor first-order

terms.

Proof: The proof is straightforwardly obtained using

the definition of ( f m
ε ) in Lemma 5 together with the fact

that

(1+ Ḋ)m−1 − (1− Ḋ) =
m−1

∑
l=1

(
n

l

)

Ḋl + Ḋ

which contains no degree 0 terms.

Lemma 7: Assume that 1+ Ḋ > 0. For 2 ≤ m ≤ n, f m
Z is

a polynomial function in εt , . . . ,ε
(m−1)
t , Ḋ, . . .D(m) and 1

1+Ḋ
,

at least quadratic in the variables εt , . . . ,ε
(m−1)
t , Ḋ, . . .D(m).

Proof: Again, we reason by induction.

Induction: we assume that the property is true for a given

m ≥ 2. Then, using (19) for m, one obtains

f m+1
Z (t) =

d[(1+ Ḋ)m]

dt
KeADAmZ +

d

dt
( f m

Z (t))

=
mD̈

1+ Ḋ

[

ε(m)−
m

∑
l=1

KAl−1ε(m−l)− f m
Z (t)− f m+1

ε (t)

−K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]

+
d

dt
( f m

Z (t))

Further, using the induction assumption jointly with the

previous lemma, one can conclude that f m+1
Z is a polynomial

function in εt , . . . ,ε
(m)
t , Ḋ, . . . ,D(m+1), 1

1+Ḋ
, at least quadratic

in εt , . . . ,ε
(m)
t , Ḋ, . . . ,D(m+1).

Initial step: the same arguments as above apply for m = 2.

2) Design of (15) based on Lemma 5, 6 and 7: As the

dynamics matrix that we consider in (3) is of companion

type, Cayley-Hamilton theorem gives

An =−
n−1

∑
i=0

aiA
i
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Therefore, for m = n (19) simply gives

ε(n)−
n

∑
l=1

KAl−1Bε(n−l) = f n
Z (t)+ f n

ε (t)

−
n−1

∑
m=0

am

[

(1+ Ḋ)nKeADAmZ +K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]

or again, using now (19) for m ranging from 1 to n−1

ε(n)−
n

∑
l=1

KAl−1Bε(n−l) = f n
Z (t)+ f n

ε (t)

−
n−1

∑
m=0

am(1+ Ḋ)n−m

[

ε(m)−
m

∑
l=1

KAl−1Bε(m−l)

− f m
Z (t)− f m

ε (t)−K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]

−
n−1

∑
m=1

amK

∫ t

t−D
AmeA(t−s)Bε(s)ds

−a0

[

(1+ Ḋ)nKeADZ +K

∫ t

t−D
eA(t−s)Bε(s)ds

]

Besides, using the Leibniz formula,

(1+ Ḋ)n−m =1+
n−m

∑
l=1

(
n−m

l

)

Ḋl

and the expression of (18), one can define

π1(Ḋ, . . . ,D(n),εt , . . . ,ε
(n−1)
t )

∆
= f n

Z (t)+ f n
ε (t)

+
n−1

∑
m=0

am(1+ Ḋ)n−m( f m
Z (t)− f m

ε (t))

−
n−1

∑
m=1

am

[
n−m

∑
l=1

(
n−m

l

)

Ḋl

]

×
[

ε(m)−
m

∑
l=1

KAl−1Bε(m−l)−K

∫ t

t−D
AmeA(t−s)Bε(s)ds

]

−a0

n

∑
l=1

(
n

l

)

Ḋl

[

ε(t)−K

∫ t

t−D
eA(t−s)Bε(s)ds

]

(20)

From there, one can obtain the dynamic (15) by observing

that

n

∑
l=1

KAl−1Bε(n−l)+
n−1

∑
m=1

m

∑
l=1

amKAl−1Bε(m−l)

=−
n

∑
l=1

b0kn−lε
(n−l) (21)

which is proven in the next section. Further, from the

definition (20) of π1, using Lemma 6 and 7, π1 is a poly-

nomial in the variables εt , . . . ,ε
(n−1)
t , Ḋ, . . . ,D(n) and 1

1+Ḋ
,

at least quadratic in the variables εt , . . . ,ε
(n−1)
t , Ḋ, . . . ,D(n).

This gives the desired result.

B. Proof of (21) using companion matrix properties

One can reformulate the term under consideration in (21)

as follows

n

∑
l=1

KAl−1Bε(n−l)+
n−1

∑
m=1

m

∑
l=1

amKAl−1Bε(m−l)

=
n

∑
l=1

KAl−1Bε(n−l)+
n

∑
p=2

n−1

∑
m=n−1−p

amKAp−n+m−1Bε(n−p)

=KBε(n−1)+
n

∑
l=2

[

KAl−1B+
n−1

∑
m=n−1−l

amKAl−n+m−1B

]

ε(n−l)

To study the second term in this last expression, consider mi
j

the jth coefficient of AiB. As A is a companion-type matrix,

one gets

mi
j =







0 if j ≤ n− i−1

mi−1
j+1 if n− i ≤ j ≤ n−1

−∑
n
l=n−i+1 a j−1mi−1

j if j = n

(22)

and that

for i ∈ N,1 ≤ j ≤ n and 1− j ≤ p ≤ max{i,n− j}
m

j
i = m

i−p
j+p (23)

Then, the coefficient of the (n− p)th derivative can be

rewritten as follows

KAl−1B+
n−1

∑
m=n−1−p

amKAp−n+m−1B

=KAl−1B+
l−1

∑
i=1

an+i−lKAi−1B

=− kn−lm
l−1
n−l+1 −

n

∑
j=n−l+2

k j−1

[

ml−1
j +

l−1

∑
i=n− j+1

an+i−lm
i−1
j

]

We now prove by induction that, for l ≥ 0 and for

n− l +2 ≤ j ≤ n, ml−1
j =−∑

l−1
i=n− j+1 an+i−lm

i−1
j .

For l = 2 and j = n, the proposition is indeed true

as ml−1
j =−an−1b0 and −∑

l−1
i=n− j+1 an+i−lm

i−1
j =−an−1m0

n.

Now, assume that the property is true for a given l ≥ 2

and for all integer j n− l +2 ≤ j ≤ n. Consider j such that

n− l +2 ≤ j ≤ n−1, then

l

∑
i=n− j+1

an+i−l−1mi−1
j =

l−1

∑
i=n− j

an+i−lm
i
j

=
l−1

∑
i=n− j

an+i−lm
i−1
j+1

=−ml−1
j+1 =−ml

j

using (22) and the induction assumption. This gives the

desired result for n− l +2 ≤ j ≤ n−1. For j = n, one gets

using successively (23) and (22)

l

∑
i=1

an+i−l−1mi−1
n =

l

∑
i=1

an+i−l−1mn−1
i

=
n

∑
i=n+1−l

a j−1ml−1
j =−ml

n

which gives the conclusion. Therefore, for 2 ≤ l ≤ n,

KAl−1B+
n−1

∑
m=n−1−p

amKAp−n+m−1B =− kn−lm
l−1
n−l+1

=− kn−lm
0
n =−kn−lb0

and KB =−kn−1b0. This concludes the proof of (21).
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