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Abstract— We address the problem of the calibration of
an array of sensors by investigating theoretically and exper-
imentally the case of 2 three-axis sensors. Our focus is on
magnetometers that can be used in a low-cost inertial navigation
system. Usual errors (misalignments, non-orthogonality, scale
factors, biases) are accounted for. The proposed calibration
method requires no specific calibration hardware. Instead, we
solely use the fact that, if the sensor is properly calibrated,
the norm of the sensed field must remain constant irrespective
of the sensors orientation. Several strategies of calibration for
an array of sensors are described along with the impact of
(unavoidable) field disturbances. Experiments conducted with
a couple of magneto-resistive magnetometers and data fusion
results illustrate the relevance of the approach.

INTRODUCTION

Recently an innovative approach of inertial navigation

has been proposed to estimate the motion of a rigid body

in areas where no GPS information is available [13]. This

method proposes to complement low-cost inertial sensors

commonly used in navigation techniques (accelerometers and

gyroscopes [5], [2]) with a specific device consisting of an

array of spatially distributed magnetometers. The technique

takes advantage of the unknown magnetic field disturbances

usually observed indoor to reduce drift in velocities. This

technique has been successfully applied for indoor laboratory

experiments in [12]. Yet, down-scaling of the system (which

is of paramount importance for embedded applications),

and the need to substitute off-line computations and data

treatments techniques with real-time computations has raised

several important issues.

A first issue is the necessity of an accurate timing of

the flow of data coming from the various subsystems of

the distributed sensors set. An example of such distributed

system is composed of nine 3-axis sensors and produces

a large amount of data under the form of 9 packets of

7 bytes every 6,5 ms. The packets are sent according to

the internal clocks of the sensors, which unavoidably are

slightly inconsistent and result in missynchronization. In [4],

a timestamping technique was proposed to address this issue.

A second issue results from the ill-calibration of the

numerous sensors used. Consider, for example, a single 3-

axis magnetometer (e.g. a HoneywellⓇ HMR2300). As-is

such an off-the-shelf sensor has several flaws. Its axis are
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misaligned, and feature biases and scale factors. This results

in measurement errors of the magnetic field. Fortunately,

this problem can be dealt with by an appropriate calibration

technique. Two classes of solutions exist. The first class,

which is the most accurate but also the most tedious to

implement, uses a so-called “calibration table” as reference

system. A second class solely relies on the fact that, whatever

the actual orientation of the sensor is, the norm of the sensed

field should remain constant and equal to a reference value

(e.g. the local Earth magnetic field which accurate database

provide values of). By rotating the sensor in every possible

direction, misalignments and biases can be identified. In [3]

and [8], such methods were proposed. As all the “table-

free” calibration methods, this method has several practical

advantages. In particular, it can be performed by the end-user

of the navigation system and is often referred to as "on-the-

field" method for this reason. This is of high interest since

the low-cost sensors characteristics drift over time.

This calibration issue gets much more involved when

several similar 3-axis sensors need to be used and their

measurements need to be compared. This is the case in the

navigation technique under consideration here. Consistency

between these sensors is critical. This implies that the sensors

must be calibrated and their calibrations must be consistent

with each others. This is the topic under consideration in this

paper.

The article is organized as follows. In Section I, the

calibration problem is defined. Our focus is on magnetome-

ters. The main defect of these systems (hard-iron, soft-iron)

are briefly recalled and modeled with the classic biases,

scale factors and misalignments. In Section II, three main

strategies to calibrate a couple of sensors are presented.

They can be easily generalized to any arbitrary number of

sensors. The impact of a magnetic gradient, which is the

main source of errors when putting the calibration procedure

into practice, is studied for each strategy in Section III.

Finally, in Section IV, the merits of the proposed calibration

method are illustrated. An observer using the previously

mentioned testbed to estimate the field and the velocity

during translations is presented. Theoretical convergence of

this observer is proved while simulation and experimental

results are presented. Finally, we conclude and sketch future

directions.

I. CALIBRATION PROBLEM

In this section, we recall the calibration problem for three-

axis sensors. We present an error model and the notations

used throughout the paper.
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Consider a three-axis sensor. Denote yp(i) (3x1 vector) its

sampled measurement, where p stands for the sensor index

and i for the sampling index. This measurement is made

when the sensor is at the (vector) position xp(i) where the

actual sensed field is denoted H(xp(i)) shortened in Hp(i)
for sake of simplicity when there is no ambiguity.

The measurement errors can be modeled by constant co-

efficients of a (vector) affine transformation. The aim of the

calibration process is to find the inverse affine transformation

which maximizes a performance index. In this paper, the

transformation is sought after under the form

Hp(i) = Apyp(i) +Bp, ∀i (1)

Here, Bp is a zero-bias vector, and Ap is referred to as

the calibration matrix. Ap accounts mainly for scale-factors,

misalignments, and the resulting cross-coupling of axes. In

the specific case of magnetometers, there are two other main

errors to consider: hard and soft iron errors. Bp accounts

for hard iron errors, which are induced by permanent unde-

sired fields (typically generated by ferromagnetic materials

attached to the magnetometer frame) and result in a bias.

As for soft iron errors, they are induced by materials that

generate magnetic fields in response to externally applied

magnetic fields. They generate an hysteresis phenomenon,

which is often small enough to be neglected. Ap takes into

account the proportional part of this error. The constant of

proportionality is referred to as the magnetic susceptibility

of the considered material. The reader can refer to [10] for

further details.

A. Single sensor calibration

Traditionally, calibration of three axis magnetometers is

carried out in magnetically shielded facilities (see e.g. [10]).

Measurements are performed in a precisely known magnetic

field, and with precise knowledge of sensors orientation.

However, the recent development of low-cost sensors has led

to a paradox. Due to their relatively low quality, these low-

cost sensors are in great need of calibration procedures, but

the cost of the traditional procedures exceeds by many times

the cost of the sensors themselves. Moreover, calibration

parameters may change over time and on-the-field calibration

is sometimes required. This has raised a huge interest in

developing "simple but effective" calibration procedures that

do not require a high degree of expertise nor an expensive

hardware to be put into practice. Lately, some procedures and

algorithms have been proposed for accelerometers (see [11],

[6]) and magnetometers (see [8], [7], [3]) calibration. They

all rely on the fact that the force field under consideration

(respectively, the gravitational field and the Earth magnetic

field) corresponds to a vector having, in theory, a constant

and known norm. The calibration algorithm consists then,

for sensor p, in finding the calibration matrix Ap and bias

Bp such as the following index is minimized

f (Ap, Bp, yp) =

N
∑

i=1

(

∥Apyp(i) +Bp∥
2
− 1

)2

(2)

This performance index involves the norm of the recon-

structed data and a comparison against its theoretical (scalar)

constant value (here 1 without loss of generality1). This

function is quartic with respect to the coefficients of Ap and

Bp. In practice, the usual algorithm (see [8], [7]) proceeds in

two steps. First, an exact linearization is performed by means

of a change of variables. Then, an inverse transformation is

analytically (or numerically) performed to obtain the desired

variables. However, the linearizing change of coordinates

is not unique. Several choices are possible and all yield

some distortion in the cost function. The iterative algorithm

proposed in [3] gets rid of this drawback by solving a

sequence of least square problems in which the input data are

iteratively calibrated. We now briefly recall this algorithm.

Details on its properties (convergence and efficiency) can be

found in [3].

Consider the ktℎ iteration. The N data under consideration

are yp,k(i), i = 1..N which are initialized at step k = 0 with

the measurements. The cost function to be minimized at this

step is

ℎ(A,B, yp,k) =

N
∑

i=1

∥

∥

∥

∥

(Ayp,k(i) +B)−
yp,k(i)

∥yp,k(i)∥

∥

∥

∥

∥

2

(3)

This function is quadratic with respect to the coefficients

of A and B. A classic least-squares approach yields the

uniquely defined solution

(Ap,k+1, Bp,k+1) = argmin
A,B

ℎ(A,B, yp,k) (4)

Data are then updated as follows using theses matrices

yp,k+1(i) = Ap,k+1yp,k(i) +Bp,k+1 (5)

After k such iterations, a matrix Ãp,k and a bias vector B̃p,k

are obtained, recursively, as

Ãp,k = Ap,kÃp,k−1

B̃p,k = Ap,kB̃p,k−1 +Bp,k

They relate yp,k(i) to the raw measurements yp(i). In details,

yp,k(i) = Ãp,kyp(i) + B̃p,k

which represents the calibrated data of the ptℎ sensor at

step k.

B. Obtaining experimental data

Measurements are obtained while the sensor is oriented in

every possible direction (see Figure 1 for a schematic planar

illustration, the actual procedure involves three-dimensional

rotations). No measurement of the sensor orientation is made

during this data acquisition. Any calibration table is thus use-

less at this data collection step. The field under consideration

(Earth Magnetic field for magnetometers, or gravitational

field for accelerometers) is assumed to be constant during

the data collection process. A warm-up phase (typically one

1This standpoint is different from numerous approaches found in the
literature [1] where the norm of the sensed field is obtained from dependable
look-up tables. No such information is available indoor.
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Fig. 2. When calibrating two sensors, rotation are made around one of
the sensor, while the other one is moving on a sphere. The gradient of the
sensed field has thus an impact on the measurements of the second sensor.

Importantly, this function is quadratic with respect to the

coefficients of A and B, yielding easy computation of the

solution of the minimization of fp,3 with respect to these two

arguments. For each sample, the value of the field taken as

reference is the average
(

y1,k(i)+y2,k(i)
2⋅∥y1,k(i)+y2,k(i)∥

)

. It is the same

for both sensors. We note the uniquely defined solution

(Ap,k+1, Bp,k+1) = argminA,Bfp,3(A,B, yk) (8)

which is obtained by a classic least-squares solver. Then, we

use these matrices to update the data corresponding to each

sensor p as follows

yp,k+1(i) = Ap,k+1yp,k(i) +Bp,k+1, ∀i = 1, . . . , N (9)

After k such iterations, a matrix Ãp,k and a bias vector

B̃p,k are obtained recursively for each sensor through

Ãp,k = Ap,kÃp,k−1

B̃p,k = Ap,kB̃p,k−1 +Bp,k

They relate the calibrated data yp,k(i) to the raw measure-

ments yp(i). Precisely,

yp,k(i) = Ãp,kyp,k(i) + B̃p,k (10)

III. IMPACT OF EXPERIMENTAL INACCURACIES

The previous presented methods give good results in

theory. Yet, several practical issues must be considered.

In particular, in view of actual on-the-field magnetometers

calibration which may be performed in slightly (or worse)

magnetically perturbed areas, it is important to determine

whether this disturbances will significantly impact on the

calibration results. We now investigate the impact of a

magnetic gradient at the place the calibration measurements

are made. For sake of simplicity, we consider that two

three-axis magnetometers are used. Except when explicitly

mentioned, we assume, without any loss of generality, that

the sensor three-dimensional rotations are made around the

first magnetometer. This magnetometer is rotated strictly

Fig. 3. Measurements and calibrated data for the two magnetometers.
Sensor 1 is placed at the center of rotation whereas sensor 2 is rotated
around sensor 1. Due to the nature of the center of rotation during the
calibration, sensor 1 is well-calibrated while sensor 2 remains slightly ill-
calibrated.

around a fixed point. Therefore, it senses the exact same field

during the rotations. By contrast, magnetometer 2, which is

attached on the same board as magnetometer 1, is moving

on a sphere centered on magnetometer 1. For this reason,

magnetometer 2 does not measure the exact same field during

the calibration experiment because of the presence of the

field gradient. This situation is pictured in Figure 2.

A. Method 1

As previously discussed, both sensors do not measure the

exact same value of the field when its gradient is not zero.

Consider x1(i) and x2(i) the (three dimensional) location

of the sensors where the itℎ measurement is performed.

According to the discussed calibration procedure, x1 is

constant while x2 is moving on a sphere. Note the vector

�12(i) = x2(i)− x1(i)

and the radius � = ∥�12(i)∥.

Note H the (vector) sensed field which is not spatially

constant. We have

H(x1(i)) = H(x2(i)− �12(i))

= H(x2(i))−∇H�12(i) + o(�2)
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The cost function to be minimized can be rewritten as follows

f1(A2, B2) =

N
∑

i=1

∥A2y2(i) +B2 −H(x1(i))∥
2

=

N
∑

i=1

∥A2y2(i) +B2 −H(x2(i)) +∇H�12(i)∥
2
+ o(�2)

=

N
∑

i=1

∥A2y2(i) +B2 −H(x2(i)) + �12(i)∥
2

(11)

with

�12(i) = H�12(i) + o(�)

Let us note (A∗
2, B

∗
2) the parameters minimizing f1 when �

is zero, i.e. the (ideal) calibration parameters when the field

value is known at the precise location of the sensor. It is

assumed to satisfy the following equation

A∗
2y2(i) +B∗

2 = H(x2(i)), ∀i = 1, . . . , N (12)

A substitution in Equation (11) yields

f1(A2, B2) =
N
∑

i=1

∥(A2 −A∗
2)y2(i) + (B2 −B∗

2)− �12(i)∥
2

Consider

E =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

y2(1)
T 0 0

0 y2(1)
T 0 I3

0 0 y2(1)
T

...
...

...
...

y2(N)T 0 0
0 y2(N)T 0 I3
0 0 y2(N)T

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(13)

and, with A′ = A − A∗ and B′ = B − B∗, consider the

vector of their components

Z ′ =
(

a′1,1 a′1,2 a′1,3 a′2,1 . . . a′3,3 b′1 b′2 b′3
)T

(14)

Then, with

Σ =
(

�12(1)
T �12(2)

T . . . �12(N)T
)T

+ o(�) (15)

the cost function to be minimized can now be written

f1 = ∥EZ ′ − Σ∥
2

(16)

which is minimized by

Z ′ =
(

ETE
)−1

ETΣ

This last equation simply implies that the coefficients of the

calibration parameters (A2, B2) differ from the optimal ones

(A∗
2, B

∗
2) (determined when the gradient of the sensed field

is zero) by terms that are proportional to ∥∇H∥.

B. Method 2

In the second method, both sensors are first calibrated

separately before the harmonization step is performed. This

requires two sets of data instead of a single one. The first set

is obtained by rotating the system around magnetometer 1

and is used to calibrate this magnetometer, whereas the

second set of data is acquired when rotating the whole

system around magnetometer 2 in order to calibrate it. Of

course, this procedure is more time-consuming, but it cancels

the impact of the disturbances of the senses field onto the

separate calibration of the sensors. Yet, the following har-

monization step still suffers from the presence of a gradient,

because the two distinct sets of data under consideration are

slightly inconsistent. Further, we shall note that, in view of

practical implementation, this method has two drawbacks.

First, the time spent to acquire data for the calibration

phase is proportional to the number of sensors in the array

(which can be as large as 9 in the application considered

in [4]). Including the necessary position shifts of the center

of rotation of the whole system, this tedious work can take

several hours. Secondly, it is difficult to perform the full

rotations exactly around the center of each of the sensors,

especially with custom built systems.

For these two reasons, we often prefer to leave out this

second method in practical applications.

C. Method 3

In the third proposed method, the second magnetometer

does not see a field of constant norm during the rotations.

This error propagates through the formula
(

y1,k(i) + y2,k(i)

2 ⋅ ∥y1,k(i) + y2,k(i)∥

)

= H(x2(i)) + �2,k(i)

where �2,k(i) vanishes when x2(i) = x1(i). In this third

method, both magnetometers are thus impacted by the sensed

field disturbances in a way similar magnetometer 2 in to

method 1 (but with a lower magnitude because of the

averaging).

D. Comparison of the proposed methods

Method 1 is the quickest of the three proposed methods.

It requires only one set of experimental data. However, the

sensor taken as reference plays a special role. Changing this

reference sensor leads to different calibration parameters.

Method 2 is the longest one to put into practice: one set

of data has to be acquired for each sensor. Moreover, it is

difficult to actually make the rotations exactly around one

sensor. But, if carefully performed, it is more accurate, es-

pecially regarding the bias. Finally, the third method requires

only one set of data and lasts a bit longer than the previous

one. However, all sensors play similar roles. The method is

completely symmetric.

In summary, method 1 or 3 can be preferred, to minimize

tedious calibration experiments, provided that the gradient

of the sensed field remains reasonably small in the area

where the sensors are to be calibrated. The effects of this

gradient is also diminished if the sensors are located close
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Fig. 4. The X-Components of 9 magnetometers calibrated separately in
a place where the magnetic field is almost uniform. Inconsistencies can be
observed.

to one another, though this is not always possible to set

them up like this in practice. With these methods, an array

of sensors can be efficiently and quickly calibrated using a

single acquisition of data. A pictorial representation of the

calibration results for method 1 is presented in Figure 3. In

this simplified planar scheme, two sensors are considered

and a full rotation is performed. Raw data which suffer

from bias and misalignments take the form of two ellipses.

The first sensor, which is the one around which the rotation

is performed, can be completely calibrated. This yields a

circle of calibrated measurements. On the other hand, due

to presence of a non-zero gradient of the sensed field, the

data of the second sensor can not be perfectly calibrated. This

results is a close to circular set of calibrated data. The results

presented here were obtained in simulation. The errors have

been magnified to stress the role of the field disturbances.

These methods have also been applied on a vast set of

magnetometers. We attached eight HoneywellⓇ HMR2300

magnetometers and one 3DMG-X1 from MicrostrainⓇ to-

gether and had the full system travel along an horizontal

wooden rail. Prior to this, the magnetometers had all been

calibrated separately. The data collected during this experi-

ment are reported in Figure 4. They are inconsistent although

the sensors were separately calibrated. This stresses the need

of a joint calibration, as is proposed in all the methods

of Section II. Then, the same experiment was conducted

with sensors that were calibrated using method 3. The

results obtained during this second experiment are reported

in Figure 5. In this case, the results are consistent.

IV. EXAMPLE OF APPLICATION

We wish to illustrate the potential of the sensing system

that we developed by a simple case-study. Consider a set

of two three-axis magnetometers that are attached together

and move along a wooden rail. Once calibrated with one

of the proposed calibration-table-free methods, they can be

used to get an estimate of the local magnetic field and its

gradient, by a finite difference scheme. These informations

can be used in real time to estimate the translation velocity
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Fig. 5. The X-Component of 9 magnetometers calibrated all together in a
place where the magnetic field is almost uniform. The data are consistent.

of a rigid body this system is attached to. Rotations can be

accounted for with gyroscopes (see [13] for details).

For this purpose, we use an observer. The observer is

first detailed in Section IV-A in a general case (translations

in 3-D with an array of sensors allowing to completely

estimate the Jacobian matrix of the magnetic field (at least

4 magnetometers are necessary)). A proof of convergence

is given in Section IV-B. Finally, Experimental results are

reported in Section IV-C. They stress the importance of the

calibration step.

A. Observer

Again note H the magnetic field in a reference frame of

coordinates, J0(H) its Jacobian, and v0 the speed of the rigid

body in this reference frame. If we consider only translations,

we have

Ḣ = J0v0

For the observer design, we assume that the velocity is

constant, i.e.

v̇0 = 0

Measurements are made in the sensor frame of coordinates.

Let y be the measured magnetic field and J the measured

Jacobian (computed by a finite difference scheme from the

discussed set of sensors). The sensor frame is not perfectly

aligned with the reference frame. We note R the constant

rotation matrix from the reference frame to the sensor

frame. With these notations, measurements equations are the

following

y = RH

J = RJ0(H)RT

The dynamic model can then be rewritten in the sensor

frame, v = Rv0 being the speed in that frame of coordinates

ẏ = Jv

v̇ = 0
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The following observer is built to estimate the field and

the speed in the sensor frame.

˙̂y = J [v̂ − L1(ŷ − y)]

˙̂v = −ℓ2J
T (ŷ − y)

where L1 is a matrix to be defined later on and l2 > 0 is a

constant parameter.

B. Proof of convergence

Consider the candidate Lyapunov-function W

W = ∥ŷ − y∥
2
+

1

ℓ2
⋅ ∥v̂ − v∥

2

Its time-derivative is

Ẇ = −(ŷ − y)T
[

JL1 + LT
1 J

T
]

(ŷ − y) (17)

Choosing L1 = JT guarantees that Ẇ is negative

semidefinite. If the set Ẇ (ŷ − y, v̂ − v) = 0 contains no

other trajectory except the trivial one (ŷ−y, v̂−v) = (0, 0),
then, according to LaSalle’s invariance principle [9], the

origin is globally asymptotically stable. Let us verify that

the invariant set is in fact reduced to the origin. Trajectories

lying in the set Ẇ = 0 are such that

JT (ŷ − y) = 0

Assuming J has full rank, i.e. there are magnetic distur-

bances, we obtain

˙̂y − ẏ = 0

However, ˙̂y − ẏ can be expressed as follows

˙̂y − ẏ = J [v̂ − L1(ŷ − y)]− Jv

which yields

0 = v̂ − v

To conclude, if the Jacobian J is a full-rank matrix, and

in practice it usually is due to the field disturbances, the

observer converges toward the value of the field and the

velocity expressed in the frame of coordinates of the sensors.

C. Experimental results

We now implement the above presented observer in a

simple one-dimensional case. Two magnetometers are used.

From the velocity estimate given by the observer, an esti-

mated position is then computed by a simple integration.

The whole system is moved 1 cm forward every 4 s.

Figure 6 shows experimental results when the system is

moved forward for a few steps, then backward, step by

step, until the original position is reached. The sensors are

calibrated according to method 3 presented in this paper.

Measurements are preliminarily filtered by a zero-phase digi-

tal filter and the synchronization technique discussed in [4] is

applied. The observer is run on the resulting data. Figure 6(a)

shows results when the two magnetometers are calibrated

together. Both velocity and position estimates are accurate. In

Figure 6(b), we report results obtained using the exact same

technique but with separately calibrated magnetometers, i.e.

ignoring the calibration methods proposed in this paper. The

error is clearly visible on the gradient, which is sensitive

since it is a differential measurement. This error leads to an

increased speed and overestimated steps in position.
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(a) Position and velocity estimates using sensors that have been calibrated
together

350 360 370 380 390 400 410
−0.8

−0.6

−0.4

−0.2

0
F
i
e
l
d
 
(
i
n
 
g
a
u
s
s
)

 

 
Measured field

Measured gradient
Estimated field

350 360 370 380 390 400 410
−0.1

−0.05

0

0.05

0.1

V
e
l
o
c
i
t
y
 
(
i
n
 
m
/
s
)

 

 
Estimated velocity

350 360 370 380 390 400 410
0.45

0.5

0.55

0.6

0.65

P
o
s
i
t
i
o
n
 
(
i
n
 
m
)

 

 
Position (simple integration of velocity)

(b) Position and velocity estimates using sensors that have been calibrated
separately

Fig. 6. Experimental results. The platform is translated step by step in
direction sensors are lined up. One step of 1 cm is made every 5 s, first
forwards then backwards, after a rest of 20 s.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have proposed ways to extend the table-

free calibration method from one single sensor to a wider

set of sensors. Three main strategies have been envisioned

with some pros and cons. The main focus was on how

to make these methods really effective in practice. This is

why the impact of a gradient in the area where the data

are acquired was studied. The theoretical efficiency of the

methods can certainly be investigated further on. We also

believe that additional calibration procedures may provide

ways to complete the proposed method when the field is

not perfectly uniform. These are current directions of future

work.
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