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Abstract— A simple distributed parameter model is proposed
for a Diesel Oxidation Catalyst (DOC). This model focuses
on the propagation of the inlet temperature variations. The
inlet-to-outlet temperature transfer function is computed. Its
inversion allows to derive an open-loop control law corre-
sponding to finite-time transitions of the outlet temperature.
However, this straightforward strategy has some shortcomings.
In particular, the obtained control histories are, for presented
cases of engineering interest, inconsistent with the performance
of available actuators. To address this issue, a constrained
optimization approach is proposed. The results lead to a
surprisingly simple control law.

I. INTRODUCTION

Over the past decades, automotive emissions standards

have steadily become more stringent [1]. In particular, to

meet the requirements of particulate matter emission stan-

dards, engines have been consequently upgraded. A prime

example is the Diesel Particulate Filter (DPF) which is found

on most new vehicles.

During regeneration [2], DPFs behave like potentially

unstable reactors [3]. Their inlet temperature must be care-

fully controlled. In most configurations, a Diesel Oxidation

Catalyst (DOC) is located upstream the DPF in the vehicle

exhaust line. To increase the DPF inlet temperature, reduc-

tants are oxidized in the DOC, which, in turn, increases

its outlet temperature. The DOC also conveys, up to some

heat losses, its inlet enthalpy flow: in other words, inlet

temperature variations propagate through the DOC. In the

vast majority of studies found in the literature, the amount

of reductants is the control variable, while the DOC inlet

temperature can be regarded as a disturbance. However, the

release of the reductants reaction enthalpy implies outlet

temperature variations, that much resemble those due to inlet

temperature variations. Therefore, it seems relevant, in a first

attempt, in order to correctly understand how the system

works and should be controlled, not to consider any chemical

reaction (that would complexify the analysis), and to assume

that the inlet temperature can be used as a control variable.

Results of this first study could also find applications in the

light-off phases [4] (when the catalyst is not hot enough

to oxidize the reductants), or for -rarely used- electrically-

heated systems [5]. In this context, the problem of motion

planning is fundamental. To address this issue, we propose
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an open-loop control strategy which is based on an inversion

of a presented partial differential equation (PDE) model.

Experimentally, it can be observed that a step change on

the inlet temperature leads to long response times [4] (a

typical order of magnitude is 100 s, while gas flows through

the DOC in a fraction of a second). Depending on the engine

outlet gas flow rate, these response times significantly vary:

they roughly increase by a factor of 10 from idle speed to

full load. Control strategies that are usually used to deal

with this problem rely on mappings, which, in practice, are

difficult (and tedious) to calibrate. We believe that a better

understanding of the system behavior can improve the control

performances.

In this paper, we present a motion planning technique

for the DOC system. A DOC is designed to improve the

mass transfer characteristics to the catalytic surface. To this

end, the channels of the monolith are narrow and numer-

ous (of the order of 1000). This geometric configuration

leads to highly-efficient heat transfer between gas and solid.

Hence, the solid phase (i.e. the monolith) acts as a spatially-

distributed energy reservoir and this phenomenon leads to

highly-delayed temperature responses. We take this fact

into account in our control-oriented model. This model is

validated experimentally, and then used for motion planning.

Its infinite dimensional form is fully accounted for in the

control strategy.

The paper is organized as follows. In Section II we formu-

late the control-oriented model. In Section III we calculate

the control by an inversion-based approach. Depending on

numerical values, this formal approach may lead to unappli-

cable results. In Section IV an optimization method is used

to generate trajectories under input constraints.

II. PROBLEM FORMULATION

A. Balance and Transfer Phenomena Equations

1: Scheme of governing phenomena involved in a DOC

Numerous models have been used and improved since

the 1960s for catalysts [6]. Fig. (1) illustrates the main

phenomena involved in a DOC. A simple model, leaving
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out chemical reactions, can be written with energy balances

for the gas phase (1) and the solid phase (2)

ερgCp,g
∂Tg

∂t
+

F

Acell
Cp,g

∂Tg

∂z

=
∂

∂z

(

εkg
∂Tg

∂z

)

− hgGa(Tg − Ts)

(1)

(1 − ε)ρsCp,s
∂Ts

∂t

=
∂

∂z

(

(1 − ε)ks
∂Ts

∂z

)

+ hgGa(Tg − Ts)

(2)

In (1) and (2), the following symbols are used: subscript

g (resp. s) refers to the gas (resp. the monolith), T is the

temperature, ρ is the density, Cp is the constant pressure

specific heat, Acell is the Vardi and Biller area of cell [7],

F is the mass flow rate, Ga is the geometric surface area-

to-volume ratio, ε is the void fraction and k is the thermal

conductivity.

B. Control-Oriented Model

According to [6] we can make the following simplifying

assumptions. Because of the symmetry, heat losses to the

surroundings are neglected. Axial diffusion in the fluid phase

is negligible since the Peclet number [8] is large Pe>50 while

the axial conduction in the solid is not important. Except

under very high flow rate conditions, the entry length is a

small fraction of the converter length. As a result, the Nusselt

and Sherwood numbers [8] can be assumed equal to the fully-

developed flow constant values. Rewriting (1) and (2) with

the following normalizing parameters



































k1 =
hgGa

ερgCpg

k2 =
hgGa

(1 − ε)ρsCps

v =
F

ερgAcell

T = Tg

(3)

we obtain the following control-oriented model


















∂T

∂t
+ v

∂T

∂z
= −k1(T − Ts)

∂Ts

∂t
= k2(T − Ts)

(4)

The variable v represents the speed of the gas flowing

through the DOC, and can be easily computed from (3).

The set of parameters (k1, k2) can either be deduced from

usual correlations [8] or identified from experimental step

changes in the inlet temperature as detailed in Subsection II-

E. We assume that the reactor is initially at steady state,

i.e. T (z, 0) and Ts(z, 0) are equal and constant. It is then

correct to assume that T and Ts represent the variations of

temperature about steady state instead of the temperatures

themselves. Hence we have an infinite-dimensional linear

model. The conditions at t = 0 are
{

T (z, 0) = 0
Ts(z, 0) = 0.

(5)

The inlet temperature can be considered as the control

variable

T (0, t) = T0 , u(t). (6)

The output of the system y is the outlet temperature

y(t) = T (L, t)

where L is length of the DOC.

C. Input-Output Response

The formal general response to an input signal can be

calculated using operational calculus with respect to the time

variable. We denote L−1 the inverse Laplace operator, x̂ the

Laplace transform of x, s the Laplace variable and, Υ the

Heaviside function. Equations (4) and (5) lead to






sT̂ + v
∂T̂

∂z
= −k1(T̂ − T̂s)

sT̂s = k2(T̂ − T̂s).

The boundary control (6) is transformed into

T̂ (0, s) = û(s).

This leads to the following first-order differential equation

∂T̂

∂z
=

1

v

( −k1s

s + k2
− s

)

T̂

Hence,

T̂ (z, s) = û(s) exp

(

−z

v
s − k1z

v
+

m

s + k2

)

(7)

where m = k1k2z/v. Using inverse Laplace transforms, we

get (refer to Appendix VI-A for details)

T (z, t) = Υ(t − z

v
)e

−

k1z

v ×
[

u(t − z

v
) + . . .

. . .

∫ t−z/v

0

e−k2τ

√

m

τ
I1(2

√
mτ)u(t − z

v
− τ)dτ

]

.

D. Step Response

In particular, the step response is computed for u(t) =
Υ(t) and can be written

T (z, t) = Υ(t − z

v
) exp

(

−k1z

v

)

×
[

1 +

∫ t−z/v

0

exp (−k2τ)

√

m

τ
I1(2

√
mτ)dτ

]

.

(8)

For efficient numeric evaluation of the above expression, we

can use the following convergent power series expansion (see

Appendix VI-B for calculation details)

T (z, t) = exp

(

−k1z

v

)

Υ(t − z/v)×
[

1 +
∑

∞

r=1

Γinc(k2(t − z/v), r)

r!(k2/m)r

]

.
(9)
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Note that the static gain G can be computed using (7) when

u(t) = Υ(t). Accordingly to the fact that heat losses have

been neglected, we have G = lims→0 T̂ (z, s) = 1.

E. Experimental Validation of the Model

Parameters (k1, k2) can be easily identified from experi-

ments. Since the model is linear, and the gain of the transfer

function is equal to 1, we use normalized temperature for

identification. As shown in Fig. (2), the model kindly fits

the experimental data.
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III. INVERSION-BASED OPEN-LOOP CONTROL

To solve the motion planning problem, i.e. to compute

control law corresponding to some desired output transients,

we propose an open-loop control law based on a formal

inversion of the input-output transfer function.

A. Inverse Control

It is straightforward to invert (7) and formulate û(s) as a

function of the output ŷ(s) for z = L

û(s) = exp

(

z

v
s +

k1z

v
− m

s + k2

)

ŷ(s). (10)

The output y(t) can be any delayed function of time. This

delay equals z/v. Let f(t) denote this function. We can write

ŷ(s) = exp
(

−z

v
s
)

f̂(s). (11)

Combining (10) and (11) we get

û(s) = exp

(

k1z

v
− m

s + k2

)

f̂(s).

The inverse Laplace calculus detailed in Appendix VI-C

leads to






















u(t) = e

k1z

v Υ(t)×
[

f(t) −
∫ t

0

√

m

τ
J1(2

√
mτ) exp (−k2τ)f(t − τ)dτ

]

y(t) = f(t − z/v)
(12)

In our application, the dead time z/v (typically 10−2 s) is

very small when compared to the response time of the system

(typically 102 s), so that f(t) can be almost regarded as y(t).

B. Simulation Results

In this section we illustrate our results with two realistic

scenarios. In case A, we use k1 = 400 s−1, k2 = 0.35 s−1

and v = 4 m.s−1. In case B, we use k1 = 1600 s−1, k2 =
0.82 s−1 and v = 4.6 m.s−1. These are two different cases

corresponding to low air flow rate and long response time,

which are in practice the most problematic to control. To

obtain all the presented numerical results, we use a catalyst

length L = 7.62 cm (3 inches). Because the system is linear

and the static gain is 1, figures are plotted with normalized

temperature responses. The choice of the trajectory is a priori

free, but several tries of usual transition functions have shown

us it has important consequences. In order to obtain a smooth

transition we choose the following C∞ Gevrey function of

order 1 + 1
γ (see [9] for the mathematical properties of this

function)


































f( t
tf

) = 0 if t
tf

≤ 0

f( t
tf

) =

∫ t
tf

0

exp

(

−
(

1

u(1 − u)

)γ)

du

∫ 1

0

exp

(

−
(

1

u(1 − u)

)γ)

du

if 0 < t
tf

< 1

f( t
tf

) = 1 if t
tf

≥ 1

Transition times tf chosen in this section are inspired from

results obtained in Section IV. They are realistic. We use

tf = 21.5 s for case A and tf = 38.5 s for case B,

and γ = 0.6 for both cases. Depending on the values

of parameters (k1, k2, v), we can get drastically different

types of control trajectories. Although not intuitive, control

presented for case A in Fig. (3a) is quite simple. For case

B, on the other hand, the control presented in Fig. (3b)

is unrealistic because of its frequency and its amplitude.

Further, in this case (actually probably in both cases) the

control obtained by inversion goes far beyond the model

validity region (non negligible conduction, non constants

coefficients and non negligible heat losses . . . ). However,

the computed control stresses interesting problems, related

to the high-capacity energy storage of the solid phase. This

partly explains why a DOC is a difficult system to control.

IV. TRAJECTORY OPTIMIZATION FOR

CONSTRAINED INPUT

As seen in Section III, inversion of the model can lead to

a “shaking” control. Actually, this does not mean that such a

system cannot be accelerated, but attention must be paid to

the control bounds. In this section, to address this issue, we

generate output trajectories under input constraints. First, we

use a classical optimization approach, then we formulate the

problem in a different way: we impose a limited number

of possible values for the control, and a limited number

of switches between these values. This drastically reduces

the number of optimization variables, whereas the loss of

performance is negligible.
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3: Control corresponding to a smooth finite-time transition

A. Problem Formulation 1 and Simulation Results

In this first formulation, we want to compute a piecewise

constant control, subject to lower and upper bounds. This

problem can be formally written under the form

min
(u0,...,un)

∫ H

0

(yc − y(τ))2dτ







umin ≤ ui = u(iTu) ≤ umax ∀i ∈ {0, . . . , n}
y(t) ≤ yc + ε ∀t ∈ [0,H]
y(t) ≥ yc − ε ∀t ∈ [T,H]

(13)

where yc is the setpoint, ε is a small positive constant, Tu

is the control sampling period, nTu is the control horizon,

and H is the prediction horizon. T corresponds to the

minimum time for which problem (13) is feasible. It is

found iteratively, for example by dichotomy. Enforcing this

minimum constraint avoids oscillations after the rise time.

For numeric evaluation, we use yc = 1, n = 60, Tu = 1 s,

H = 200 s, umin = 0, umax = 4, and ε = 0.003. As seen

in Subsection II-B, the model is linear. Hence, for numerical

experiments, its response to a given piecewise constant input

can be quickly evaluated by a linear combination of time-
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4: Optimized control with method 1

delayed step responses. Step response g is evaluated by (9)

and y is given by

y(t) = u0 g(t) +
n

∑

i=1

(ui − ui−1) g(t − iTu)

Fig. (4a) and (4b) show that, in both cases, the system is

accelerated as in Section III, but, now, input constraints are

satisfied. The transitions are not achieved in finite-time but,

from the end time used in Section III, the output remains

within a tight range around the final value.

B. Problem Formulation 2 and Simulation Results

The second method presented in this subsection allows

to further simplify the control with minor consequences on

performance. We can notice in Subsection IV-A that the

control presents numerous pulses before finally setting to 1.

In other words, once the output has almost reached its final

value, the control still acts over a long period. We would

like to shorten this period for an easier implementation of

the control. To this end, we consider only a limited number

of pulses N , before the final control value is kept constant.

The N pulses share the same magnitude (equal to the

allowed maximum umax), while their switch times have to be
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5: Optimized control with method 2

optimized. The optimizer also computes the time when the

control is set to its final value. The constraints on y, as well as

the objective function, are kept from problem (13). It seems

clear that this problem has a solution for any N: shortening

enough the pulses durations will generate a response close

to the step response which satisfies the constraints.

We denote ti the successive rise and fall times of the

pulses, we choose N = 2 (i.e. i = 0..4 with t0 = 0 and

t4 representing the time of final step change) and umax = 4.

The problem is formulated as

min
(t1,...,tN )

∫ H

0

(yc − y(τ))2dτ







ti ≤ ti+1 ≤ H ∀i ∈ {1, . . . , 2N − 1}
y(t) ≤ yc + ε ∀t ∈ [0,H]
y(t) ≥ yc − ε ∀t ∈ [T,H]

(14)

In the same way as in subsection IV-A the response can be

quickly evaluated by

y(t) = umax

N−1
∑

i=0

(g(t − t2i) − g(t − t2i+1)) + g(t − tN )

Case A

Method Rise time (s) Energy Computational
expense index effort index

Inversion 19.77 86.18 12.53
Optimization 1 19.70 71.73 18.54
Optimization 2 19.74 71.73 1.000

Case B

Method Rise time (s) Energy Computational
expense index effort index

Inversion 35.40 2.19 106 4881
Optimization 1 34.28 68.59 42.93
Optimization 2 35.30 68.93 1.000

I: Performance & Cost

Results of optimizations for cases A and B are presented in

Fig. (5). Control is simpler and time duration after which

the control has reached its final value has been reduced. As

shown in Table I performance in terms of output variation

has remained very close to the previous case. Moreover, the

number of variables in the optimization problem has been

considerably reduced, allowing a substantial reduction of the

computational effort.

C. Inversion of the Resulting Trajectory

We can notice that the trajectory resulting from optimiza-

tion in Section IV “takes off” much slower than the trajectory

used for inverse control in Section III. We can wonder if the

“shaking” inverse control is caused by a wrongly chosen tra-

jectory. In order to check this point we inverse the trajectory

obtained with optimization in Section IV. Fig. (6) presents

the inversion-based control corresponding to the trajectory

obtained in Fig. (5a). We notice close matching between the

two controls despite inaccuracy which is certainly due to

difficulties in evaluating (12). This logically points out the

fact that the trajectory should not be chosen as a simple

transition function.

0 10 20 30 40 50 60 70 80
−0.5

0

0.5

1

1.5

Time (s)

N
o

rm
a

liz
e

d
 t

e
m

p
e

ra
tu

re
 r

e
s
p

o
n

s
e

 

 
N

o
rm

a
liz

e
d

 c
o

n
tr

o
l

 

 

−1

0

1

2

3

4

Trajectory generated
by optimized control

Optimized control

Inverse control

6: Inverse control for optimized trajectory - case A

2096



V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we presented a distributed parameter model

which, despite numerous simplifying assumptions, is in

great accordance with experimental data obtained on Diesel

Oxidation Catalyst (DOC) test bench. Formally, we have

shown how the derived input-output transfer function, which

involves delays and Bessel function among others, could be

inverted, yielding a straightforward solution to the motion

planning problem. Based on scenarios of engineering inter-

est, we stressed that this simple strategy has some serious

shortcomings. It seems that output histories (here represented

by a classic Gevrey function) require a design method, which

is likely to come from mathematical analysis, to prevent the

high frequencies and large amplitude jumps observed on cor-

responding input values. Fortunately, these “jumps” are not

necessary and are, in facts, useless. Interestingly, the general

shape of the obtained signal is insightful, and can serve as

an initial guess for numerical methods which can deal with

explicit constraints. We presented two such methods, which,

as it is demonstrated, are simple to implement and produce

efficient solutions.

Our current research focuses on improving the discussed

methods. We desire to get more insight into the formal

computations and determine which family of functions is

appropriate as inputs to the inverse problem. On the other

hand, the numerical method can be improved and general-

ized to incorporate further neglected details, which in some

situations, could be important.

B. Future Works

In all our results, we notice that a very good mean to

accelerate the system is to use a pulsed control. That could

be used as an online control method, which is the subject

of on-going works. Of course, we also consider the practical

case of reductants oxidation -i.e. spatially distributed heat

generation-, that will be the subject of forthcoming publica-

tions.

VI. APPENDIX

A. Inverse Laplace transform of T̂

Let δ(t) denote the Dirac function and ∗ the convolution.

Using inverse Laplace transform [10] [11] we get

L−1

(

T̂ (z, s) exp

(

z

v
s +

k1z

v

))

= L−1

(

û(s) exp

(

m

s + k2

))

=
(

exp (−k2t)L−1
(

exp
(m

s

)))

∗ L−1 (û(s))

=

(

exp (−k2t)

(

δ(t) +

√

m

t
I1(2

√
mt)

))

∗ u(t)

= (exp (−k2t)δ(t)) ∗ u(t) + e−k2t

√

m

t
I1(2

√
mt) ∗ u(t)

= u(t) +

∫ t

0

e−k2τ

√

m

τ
I1(2

√
mτ)u(t − τ)dτ

So,

T (z, t) = Υ(t − z

v
) exp

(

−k1z

v

)

×
[

u(t − z

v
) + . . .

. . .

∫ t−z/v

0

exp (−k2τ)

√

m

τ
I1(2

√
mτ)u(t − z

v
− τ)dτ

]

B. Series expansion of an integral term

Noting w = 2
√

mτ , dw =
√

m/τdτ and b = k2/(4m),
integral representation in (8)

∫ t−z/v

0

exp (−k2τ)

√

m

τ
I1(2

√
mτ)dτ (15)

can be transformed into

∫ 2
√

m(t−z/v)

0

exp(−bw2)I1(w)dw. (16)

Provided the following result [12]
∫ t

0

exp(−mvb)vα−1dv =
m−α/b

b
Γ(α/b)Γinc(mtb, α/b),

(17)

where

Γinc(x,m) =
1

Γ(m)

∫ x

0

tm−1 exp(−t)dt

and because the Bessel function I1 [10] can be represented

with

I1(x) =
∞
∑

r=0

1

r!(r + 1)!

(x

2

)2r+1

(18)

it is possible to write the integral (15) as an infinite sum of

standard functions: we can use the series decomposition (18)

in integral (16), and use the property (17). Finally, this yields

∫ t−z/v

0

exp(−k2τ)

√

m

τ
I1(2

√
mτ)dτ

=
∑

∞

r=1

Γinc(k2(t − z/v), r)

r!(k2/m)r
.

C. Inverse Laplace transform of û

L−1

(

û(s) exp

(

−k1z

v

))

= L−1

(

exp

(

− m

s + k2

)

F̂ (s)

)

=
(

exp (−k2t)L−1
(

exp
(

−m

s

)))

∗ L−1
(

F̂ (s)
)

=

(

exp (−k2t)

(

δ(t) −
√

m

t
J1(2

√
mt)

))

∗ f(t)

= (exp (−k2t)δ(t)) ∗ f(t) − . . .

. . .
(

exp (−k2t)
√

m/tJ1(2
√

mt)
)

∗ f(t)

We finally get

u(t) = exp

(

k1z

v

)

Υ(t)

[

f(t) − . . .

. . .

∫ t

0

√

m

τ
J1(2

√
mτ) exp (−k2τ)f(t − τ)dτ

]
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