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Abstract Experimental multi-objective Quantum Control is an emerging topic

within the broad physics and chemistry applications domain of controlling quantum

phenomena. This realm offers cutting edge ultrafast laser laboratory applications,

which pose multiple objectives, noise, and possibly constraints on the high-

dimensional search. In this study we introduce the topic of multi-observable

quantum control (MOQC), and consider specific systems to be Pareto optimized

subject to uncertainty, either experimentally or by means of simulated systems. The

latter include a family of mathematical test-functions with a practical link to MOQC

experiments, which are introduced here for the first time. We investigate the

behavior of the multi-objective version of the covariance aatrix adaptation evolution

strategy (MO-CMA-ES) and assess its performance on computer simulations as well

as on laboratory closed-loop experiments. Overall, we propose a comprehensive

study on experimental evolutionary Pareto optimization in high-dimensional con-

tinuous domains, draw some practical conclusions concerning the impact of fitness

disturbance on algorithmic behavior, and raise several theoretical issues in the

broad evolutionary multi-objective context.
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1 Introduction

Quantum control (QC) [1, 2], sometimes referred to as Optimal Control or Coherent

Control, aims at altering the course of quantum dynamics phenomena for specific

target realizations. There are two main threads within QC, theoretical and

experimental control, as typically encountered in physics. Interest in the subject has

rapidly increased during the past 10 years, in parallel with the technological

developments of ultrafast laser pulse shaping capabilities [3] that made it possible to

bring the dream into experimental fruition.

Quantum control theory (QCT) [4] aims at manipulating the quantum dynamics of a

simulated system by means of an external control field, which typically corresponds to

a temporal electromagnetic field arising from a laser source. Quantum Control

Experiments (QCE) [5] consider the realization of QC in the laboratory, generally

executed by applying evolutionary learning-loops for altering the course of quantum

dynamics phenomena. Here, the yield, or success-rate, is assessed by a physical

measurement. The nature of the optimization is fundamentally different than in QCT,

due to practical laboratory constraints: limited bandwidth, limited fluence, control

resolution, proper control basis, etc. The optimization of QC systems in the laboratory

typically poses many algorithmic challenges, such as operating with high-dimen-

sionality, noise, control constraints, and most importantly in this context, a potentially
large number of simultaneous objectives. Attractive features of QCE are the extremely

short duration and low cost of an experiment, in comparison to other real-world

experimental systems: the duration of a typical QC measurement is 1msec, allowing a

well-averaged single experiment to be recorded in the order of a single second.

Evolutionary Algorithms (EAs) [6] are the most commonly employed routines for

optimization of QCE systems. This can mostly be attributed to their high success-

rate in addressing the aforementioned challenges, as reported also in other domains

of experimental many-parameter systems (see, e.g., [7]). In particular, they

efficiently treat noisy problems, likely due to the employment of large populations

as well as to the fact that they do not require any explicit gradient determination.

Furthermore, EAs possess several features which are very effective in solving multi-

objective (MO) problems, such as being population-based algorithms, having

diversity generation and preservation mechanisms, etc. Evolutionary multi-objec-

tive algorithms (EMOA) (see, e.g., [8–10]) constitute popular Pareto optimizers that

have been highly successful in treating MO problems.

The list of successful quantum systems controlled in the laboratory by means of

EAs in physics and chemistry is growing rapidly [2], but the vast majority address

de facto single-objective optimization problems. The topic of multi-objective QC,

also referred to as multi-observable quantum control (MOQC), considers multiple

distinct physical observables, referring to mutually competing physical processes.

One scenario is a single type of quantum system, where the competition may be

driven by ratios of controlled ionization or fragmentation of the same molecule [11],

versus other scenarios involving several independent quantum systems, e.g.,

fluorescence signals in Optimal Dynamic Discrimination (ODD) of similar

molecules [12, 13]. MOQC has been addressed in various experimental systems,

predominantly by means of tailored single-objective scalar functions (see, e.g.,
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[14]). Treating MOQC as a Pareto optimization problem has been reported only

recently, and there is currently a limited number of studies on this topic: see [15] for

QCT and [12] for QCE. While the former constituted the first theoretical study of

Pareto fronts in QC, even without involving a MO algorithmic approach, the latter

study is the first reported experimental QC work by means of an EMOA, namely the

NSGA-II [8].

This study considers several MOQC systems, both experimental systems in the

laboratory as well as simulated systems subject to noisy environments. This work

aims to present a pioneering study on experimental Pareto optimization in high-
dimensional continuous domains (at least n = 80 decision parameters). Following

the successful application of the covariance matrix adaptation evolution strategy

(CMA-ES) [16] to single-objective QC systems [17, 18], the current study focuses

on the multi-objective version of the CMA-ES (referred to in our notation as

MO-CMA) [19] as the algorithmic tool. We investigate its performance upon

treating optimization tasks of both noisy model landscapes (e.g., Multi-Sphere) as

well as real-world MOQC systems.

The manuscript is organized as follows. Section 2 will provide some background

on the study of EMOA under noise, and outline the specific characteristics of QCE

systems in this context. This will be followed by the description of our algorithmic

scheme in Sect. 3, where we shall also discuss the topic of single-parent elitist ES

behavior in the presence of noise. Section 4 will introduce the systems under study.

We will report on our practical observations in Sect. 5, and conclude in Sect. 6.

2 Uncertain environments (noise)

The presence of uncertainties in environments subject to optimization by EAs has

been widely studied in recent years. The traditional classes of investigated

uncertainties typically include noisy objective functions [20], approximation error

in the objective function [21], the search for robust solutions [22], and dynamic

environments [23]. Optimization subject to noisy environments is typically defined

within the topic of Robustness. While the research on single-objective EAs under

uncertain environments in general, and under noisy objective functions in particular,

has been widely studied (see, e.g., [20, 24]), there is a limited number of reported

EMOA studies to date. The vast majority of the existing studies consider the

scenario of fitness functions subject to noise, and propose techniques to efficiently

handle this particular uncertainty. Such studies typically make the assumption that

the fitness values are subject to additive Gaussian noise, denoted by N , with zero

mean and finite variance,

~fiðxÞ ¼ fiðxÞ þ N 0; �2
f

� �
; ð1Þ

where the perceived ith fitness is ~fi and the ideal fitness is fi. The variance of the

normal disturbance, �2
f , is referred to as the noise strength, and is assumed to either

remain fixed during a run (i.e., additive noise), or to be a multiplicative factor of the

fitness measurement, i.e., �2
fi
� fi. Also, the so-called degree of overvaluation usually
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refers to the difference between the perceived fitness and the ideal fitness: ~fi � fi.

Other types of noisy models, such as consideration of uncertainty in the decision

parameters to be optimized, have received scarce attention [25, 26]. This type of

noise, which corresponds to the precision of the optimized design and may represent

manufacturing error, is of particular interest to this study. The fitness values are

then modeled as

~fiðxÞ ¼ fi xþN 0; �2
xI

� �� �
: ð2Þ

Here, since the decision parameters are systematically disturbed, each one of them

can be controlled only up to a certain degree of accuracy. Moreover, the fitness

values in this case may be either enhanced or deteriorated, depending exclusively

upon the nature of the objective function and the manner in which the noise

propagates through it. Thus, the expected fitness overvaluation or undervaluation
may be estimated only if the propagation of the noise can be derived. We choose to

refer here to the difference between the perceived and the ideal fitness values

stemming from noisy decision parameters as the fitness disturbance, i.e., j~fi � fij.
Regardless of the differences in the modeling, the system still retains inherent

underlying uncertainty, explicitly revealed by two successive evaluations of the

same recorded input variables returning two different sets of output values.

2.1 EMOA in noisy environments: robustness

Early EMOA work on treatment of noisy objective functions includes the

probabilistic Pareto ranking approach (similar concepts by [27, 28]), which

introduces a modified selection criterion accounting for the stochasticity of the

objective function. The concepts of domination dependent lifetime and re-sampling

of archived solutions was introduced by Büche et al. in [29]. Moreover, recent

studies (see, e.g., [30]) proposed noise-handling features, as additions to existing

EMOA, and considered a suite of synthetic bi-criteria landscapes as a testbed. In a

recent study, Bader and Zitzler [31] provided an important overview on robustness

in multi-objective optimization. In general terms, multi-objective noise-treatment

and robustness-accounting are carried out by one of the following schemes [31]:

1. Replacement of the objective function value by a measure reflecting

uncertainty, e.g., statistical mean, or signal averaging [32]

2. Introduction of an additional robustness criterion to the search [26, 33, 34]

3. Consideration of a tailored robustness constraint, imposing candidate solutions

to satisfy statistical criteria [26, 35]

In what follows, we refer to two specific studies that are directly linked to our

work.

2.1.1 Simulated robustness in multi-objective optimization

Deb and Gupta [26], in a pioneering work, introduced systematic disturbance to

decision parameters in Pareto optimization and posed the demand for attaining
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robust solutions. The study shifted the focus from searching for global best Pareto

fronts to robust Pareto fronts, whose pre-images are solutions that are robust to

variable perturbations. However, as the authors concluded, the proposed schemes

were prone to being impractical in real-world scenarios, as they increased the total

number of evaluations by factors of *50–100.

2.1.2 Multi-objective experimental optimization

The first reported campaign of experimental Pareto optimization was carried out by

Knowles and co-workers within biological experimental platforms (e.g., [36], and

see [37] for an overview). In addition to the successful results on multiple

experimental systems, this campaign led to the subsequent development of the

ParEGO, an EMOA specializing in Pareto optimization subject to an extremely

small budget of measurements (see, e.g., [38]). This promising search heuristic was

designed for specific demanding experimental conditions, amongst which are

– low noise levels, i.e., individual experiments practically need not be repeated,

– locally smooth search landscapes,

– low-dimensional search spaces (less than 10 decision parameters).

2.1.3 Note on elitism versus robustness

It has been pointed out in previous studies that elitist selection is an essential

component for efficient multi-objective optimization (see, e.g., [39, 40]). A common

argument is the need to preserve the current population’s information in the global

selection phases of Pareto domination followed by secondary criteria. Elitism, at the

same time, dictates a unique dynamic that when exposed to uncertain environments

has the potential to deteriorate the quality of the run, suffer from systematic

overvaluation, and lead to periods of stagnation. The currently employed EMOA,

namely the MO-CMA, employs an elitist strategy as its algorithmic kernel. Due to

its nature, and due to the nature of experimental frameworks, we shall also explore

theoretical studies from the realm of single-objective Evolution Strategies related to

this study, as outlined in Sect. 3.

2.2 QC systems: sources of noise and uncertainty

Uncertainty in QCE stems from various sources, and exists at several levels. We

attribute it to three main factors, in decreasing importance, as we shall explain in

detail in what follows (compare to [22] as a generic reference):

(A) Spectral phase noise: uncertainty concerning the decision (input) parameters;

the error in realizing the prescribed parameters in the experimental setup

(B) Observation noise: uncertainty concerning the measurement (output) values,

originating from detector noise (also known as Johnson-Nyquist noise)
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(C) Environmental drift: Systematic slow deviation in the system values over the

time span of the entire experiment, e.g., minutes to hours

(A) The primary component in the current experimental learning loop generating

uncertainty with highest impact is the process responsible for the construction of the

laser pulse, which is carried out with a pulse shaper. Unlike standard modeling in

the literature regarding noisy environments, the current framework is modeled as

subject to additive Gaussian noise on the control variables (i.e., the decision

parameters to be optimized, or the input), which propagates typically in a highly

nonlinear manner to the measured values (i.e., the objective functions, or the

outputs). More explicitly, the control function with spectral modulation consists of

the spectral amplitude A(x) and phase /(x) functions, which together construct the

electric field:

EðtÞ ¼ R

Z
AðxÞ expði/ðxÞÞ expð�ixtÞ dx

� �
: ð3Þ

Most QC processes are highly sensitive to the phase, and phase-only shaping is

typically sufficient for attaining optimal control. Our experiments only include

phase modulation, where the spectral function A(x) is fixed. The latter is well

approximated by a Gaussian and determines the bandwidth, or the minimal pulse

duration. Note that shaping the field with phase-only modulation guarantees con-

servation of the pulse energy.

The spectral phase /(x) is defined at n frequencies {xj}j=1
n that are equally

distributed across the bandwidth of the spectrum. These n values, {/(xj)}j=1
n ,

correspond to the n pixels of the pulse shaper and are the decision parameters to be

optimized in the experimental learning loop:

/ðxÞ ¼ ð/ðx1Þ;/ðx2Þ; . . . ;/ðxnÞÞ: ð4Þ

The laser field, as defined in Eq. 3, completely determines the dynamics of any

controlled quantum process, subject to the associated wavefunction w(t), satisfying

the Schrödinger equation:

i
ow
ot
¼ ðH0 þ VÞwðtÞ

V ¼ �lEðtÞcosðx0tÞ
ð5Þ

where H0 is the field-free Hamiltonian and l is the electric dipole moment. The

modeling of noise on the shaper is equivalent to Eq. 2, assuming additive Gaussian

noise on each pixel (independent Gaussian sampling):

~/ðxÞ ¼ /ðx1Þ þ N 1 0; �2
S

� �
; . . . ;/ðxnÞ þ N n 0; �2

S

� �� �
; ð6Þ

where ~/ðxÞ and /(x) are the perceived and the ideal pixel values, respectively, and

each pixel is subject to a noise level of �2
S; the latter is assumed to remain fixed

during the course of the whole experiment. Since this type of uncertainty stems from

physical disturbances—such as dust or convection currents that are responsible for

variable refraction indices, and therefore can be modeled as some continuous
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function—the independently sampled Gaussian disturbance is thus an approxima-

tion. The correlations between disturbances on adjacent pixels may be considered in

further studies.

The variation in the input propagates into the output in a highly nonlinear

manner, due to the complex transformations involved in the process (Eqs. 3 and 5),

and yields non-additive deviations with an unknown form.

(B) Given a quantum observable operator, Oi, and given the propagated

wavefunction w solving Eq. 5, a quantum observation is then defined as

J i ¼ hwjOijwi. The measurement value is assumed to be subject to observation
noise, corresponding to electronic or thermal fluctuations in the detector (Johnson-

Nyquist noise), which typically possesses very low noise strength �2
J and is modeled

as additive Gaussian deviations, equivalent to Eq. 1.

The high duty cycle of QC experiments (typically 1 kHz) permits increased signal

averaging, which reduces the influence of additive noise sources, such as measure-

ment noise, by virtue of the central limit theorem. Thus, given k independent, single-

shot measurements, the mean and variance of the observation in the presence of

measurement noise, ~J i, may be described as follows:

h ~J ii ¼ J i; VAR½ ~J i� ¼
�2
J
k
; ð7Þ

and given sufficient signal averaging, its contribution is effectively removed. While

such signal averaging always increases the precision of the QC measurement, the

contribution of non-additive noise sources, such as the propagation of ~/ðxÞ (Eq. 6),

may not be removed, and is of particular interest in this study.

(C) The third source of uncertainty, with the least impact, is general system drift

which occurs in a time span of the entire experiment (minutes to hours). The

observation is then disturbed by some temporal function n(t):

Ĵ iðtÞ ¼ ~J i þ nðtÞ: ð8Þ

Figure 1 summarizes the sources of noise in a typical QC experiment.

(A) (B)

(C)

Fig. 1 Summary of the three main sources of noise in a typical Quantum Control experiment. Compare
to [22] as a generic reference
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3 The algorithmic approach: multi-objective CMA-ES

Following the broad success of the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) in single-objective continuous optimization, a multi-objective version has

been released [19]. In short, the CMA is a derandomized ES variant that has been

successful in treating correlations among decision parameters by efficiently learning

optimal mutation distributions. The MO-CMA relies on the elitist (1 ? k)-CMA

kernel [41] (typically with k = 1), which had been originally designed for it, likely

due to the aforementioned studies indicating that elitism is essential for efficient

multi-objective optimization [39, 40]. The elitist CMA combines the classical

concepts of the (1 ? 1)-ES, and especially the success probability and the success
rule components (see, e.g., [6]), with the Covariance Matrix Adaptation concept.

Explicitly, the set of evolving individuals comprises l search points, which

correspond to l independently evolving single-parent CMA mechanisms. Given the

ith search point in generation g, x
ðgÞ
i , an offspring is generated by means of a

Gaussian variation:

x
ðgþ1Þ
i �N x

ðgÞ
i ; rðgÞ

2

i C
ðgÞ
i

� �
: ð9Þ

The covariance matrices, {Ci
(g)}i=1

l , are initialized as unit matrices and are learned

during the course of evolution, based on cumulative information of successful past

mutations. The step-sizes, {ri
(g)}i=1

l , are updated according to the so-called success
rule based step-size control. The set of parents and offspring undergoes two MO

evaluation phases, corresponding to two selection criteria: the first criterion is Pa-

reto domination ranking, followed by the hypervolume contribution criterion. Fig-

ure 2 illustrates the operation of the MO-CMA algorithm. For more details we refer

the reader to [19].

3.1 Introduction of noise

The application of the MO-CMA to MOQC in general, and to the systems under

investigation in the current study, introduces new aspects to Pareto optimization at

Fig. 2 Cartoons illustrating the MO-CMA mechanism: [LEFT] The objective space, where selection is
subject to two criteria: Pareto domination ranking and hypervolume contribution [19]. [MIDDLE] The
decision (search) space, where the pre-images of the evolving Pareto front are depicted, and
simultaneously updated as independent (1?1)-CMA kernels. [RIGHT] A solitary CMA kernel
evolving in the decision space of an elliptic single-objective model landscape
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different levels that have to be addressed. The current framework differs from

previously studied MO noisy systems in two main aspects:

– The recorded objective function values (signal measurements) cannot be

assumed to follow a specific distribution; the degree to which the noise on the

decision parameters propagates into the objective function values is generally

unknown, and in any case the latter is not additive.

– Due to the nature of the MO-CMA learning rules, any manipulation or

replacement of archived solutions is not recommended. This is a common rule

of thumb for the family of derandomized ES, which rely on cumulative

information gained from previously selected search points.

Furthermore, the introduction of noise to the MO-CMA is expected to raise

additional issues:

– Single-parent strategies experience difficulties in handling noisy landscapes, in

comparison to multi-parent strategies: the application of recombination in the

latter case proved highly efficient in treating excessive noise [42]. More

specifically, in the context of QC experimental optimization, the single-

objective CMA was observed in [17] to fail without recombination, and to

perform extremely well otherwise, as expected from theory [42].

– Elitist strategies support the survival of parents, and are likely to encounter

scenarios in which highly overvaluated perceived fitness values are kept for long

periods, causing stagnation (see, e.g., [43]). The issue of fitness disturbance is

expected to become a problem for the MO-CMA, should its implementation

follow the original algorithm and avoid parental fitness re-evaluation.

Arnold and Beyer [44] considered the aforementioned effects and studied

theoretically the local performance of the single-objective (1 ? 1)-ES in a noisy

environment. Here are some of the relevant conclusions of that study:

1. Failure to reevaluate the parental fitness leads to systematic overvaluation.

2. Overvaluation is responsible for the different behavior of the elitist single-

parent strategy, in comparison to other strategies, and may lead to long periods

of stagnation.

3. Overvaluation may, nevertheless, be beneficial for the specific homogeneous

environment of the quadratic sphere in the limit of infinite dimensions.

4. Occasional parental fitness re-evaluation seems to be superior with respect to no

re-evaluation at all and to re-evaluation in every generation.

5. Overvaluation has the potential to render useless success-probability based
step-size mechanisms.

It should be stressed that disturbance of objective function values in experimental
optimization typically cannot be tolerated, and is primarily perceived as a source of

deception that deteriorates the reliability of the attained results. Also, the main focus

of the current study is on the attained set of solutions, and on the ability to reproduce

the perceived fitness values as reported in the algorithm’s output. In particular, in

the MO context, the research goal is to investigate the nature of the attained Pareto
optimal set, in light of its a posteriori re-evaluation.
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3.2 A proposed scheme

Given the conclusions concerning the (1 ? 1)-ES outlined in the previous section,

we would like to propose a modus operandi for our experimental optimization,

subject to noise, with the MO-CMA. In particular, three different empirical

scenarios are considered:

1. Default MO-CMA (‘D’)

2. Parental fitness re-evaluation every generation (‘E’)

3. Occasional parental fitness re-evaluation at every epoch (‘O’)

The last scenario aims at achieving a trade-off between low fitness disturbance

during the run (reliability) versus keeping the number of experimental evaluations to

a minimum. It can also be considered as an attempt to corroborate the theoretical

results discussed earlier (see the summary of [44] in the previous section, and

particularly point 4), upon transferring them to the multi-objective framework.

We set the re-evaluation epoch to 10 generations, inspired by a recommended

rule of thumb for the evaluation epoch of the step-size in the (1 ? 1)-ES (see [6]

p. 84).

4 Systems under investigation

We present here our selected models for the evaluation of the MO-CMA, which

comprise model landscapes, a simulated QC system, and two QC laboratory

experiments.

4.1 Model landscapes

Here we briefly introduce the model landscapes to be Pareto optimized. They

include the basic Multi-Sphere model, which is considered to be an elementary

multi-objective test-case, along with a quantum-oriented model landscape, referred

to as the Diffraction Grating problem. The latter, which is introduced here for the

first time as a multi-objective test-problem for the optimization community, shares

many characteristics with QC problems, such as the nature of the decision

parameters and some properties of the objective function. At the same time, it

possesses a quite simple form, requires an extremely short CPU evaluation time, and

offers a complete mathematical formulation (e.g., the propagation of systematic

noise may be analytically derived). Thus, it as a particularly attractive test-case for

this study, and potentially for other future studies, as it offers a practical link to
experimental optimization with a very low computational cost.

The landscapes will be optimized subject to a search space dimensionality of

n = {10, 30, 80}, while we choose to expose the search to noise solely on the

decision parameters, corresponding to Eq. 2, with the following values:

�2
x ¼ f0:001; 0:005; 0:01; 0:02; 0:05g ð10Þ
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4.1.1 The multi-sphere model

We consider the m-objective quadratic multi-sphere as our model landscape to be

Pareto optimized in an n-dimensional search-space (see, e.g., [45]):

fðxÞ ¼

ðx� c1ÞT � ðx� c1Þ
ðx� c2ÞT � ðx� c2Þ

..

.

ðx� cmÞT � ðx� cmÞ

0
BBB@

1
CCCA �! min; c1 ¼

1

0

0

..

.

0

0
BBBB@

1
CCCCA
; . . . ; cm ¼

0

0

0

..

.

1

0
BBBB@

1
CCCCA
: ð11Þ

The shape of the Pareto front is convex, and it is explicitly described for m = 2

as follows (see, e.g., [46]):

f2 ¼ 2 1� f1

2

� 	1=2
 !2

; f1 2 ½0; 2� ð12Þ

Upon consideration of noise on the decision variables, the mean of the perceived

fitness reads

h~fiðxÞi ¼ fiðxÞ þ n�2
x ; ð13Þ

and its variance is described as follows (for the derivation see, e.g., [25]):

VAR½~fiðxÞ� ¼ 4�2
x fiðxÞ þ

n

2
�2

x

� �
ð14Þ

4.1.2 The diffraction grating problem

The Diffraction Grating family of functions introduces a basic set of optical test-

problems for Pareto optimization, scalable in dimension and subject to a collection

of defining parameters for setting the Pareto front’s curvature.

Given a diffraction grating optical setup of n slits, defined by the width of each

slit b and the space between adjacent slits h, and given a spatially uniform

electromagnetic plane wave illuminating the slits with corresponding phases

u 2 ½0; 2p�n, the intensity on a screen point in the Fraunhofer regime (i.e., far field)

positioned at q reads:

IDGðq;uÞ ¼
1

n2
sinc2 qb

2

� 	
�
Xn�1

k¼0

expðiqhkÞ � expðiukÞ













2

¼ 1

n2
sinc2 qb

2

� 	
� nþ 2 �

Xn�1

k¼0

Xn�1

‘[ k

cos½qhð‘� kÞ þ Du‘k�
( )

; ð15Þ

where u ¼ ðu0;u1; . . . ;un�1Þ
T

and Du‘k � u‘ � uk. Figure 3 provides an illus-

tration for the Diffraction Grating setup.

Given a set of m competing points on the screen, described by a corresponding

position vector q 2 R
m, the m-objective Diffraction Grating problem to be Pareto

optimized is defined as follows:
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fðq;uÞ ¼

IDGðq1;uÞ
IDGðq2;uÞ

..

.

IDGðqm;uÞ

0
BBB@

1
CCCA �! max ð16Þ

The shape of the Pareto front is determined by the positions of the points on the

screen, and may furthermore be controlled by means of the parameters b and h. This

problem offers a rich variety of complexity levels, and can easily be extended to

many different forms, such as multiple wavelengths, consideration of controllable

amplitudes, nonlinear screens, 2-dimensional screens, etc.

Let us consider a setup with b = 1, h = 4. The intensity values on the screen due

to optical interferences follow a period, Tq ¼ 2p
h , and it is thus convenient to

consider positions in terms of this period Tq. In our calculations we shall consider

the maximization of the intensity at position zero, q0 = 0, competing with the

maximization of the intensity at the following positions: q ¼
f0:1 � Tq; 0:25 � Tq; 0:5 � Tqg.

For illustration, approximate Pareto fronts (attained by the MO-CMA) of the

competition between the intensity at q0 = 0 to the intensity at each one of the

positions q ¼ f0:1 � Tq; 0:25 � Tq; 0:5 � Tqg—formalized as bi-criteria problems

following Eq. 16 with n = 10 phase points—are depicted in Fig. 4. In addition,

an approximate Pareto surface, obtained by the steady-state MO-CMA, presenting

the competition between intensities of points positioned at q0 = 0, q1 ¼ 0:25 � Tq,

and q2 ¼ 0:5 � Tq—formulated as a tri-criteria problem (Eq. 16) with n = 10 phase

points—is depicted in Fig. 5.

In what follows, this study will focus on the bi-criteria case of q1 ¼ 0:5 � Tq ¼ p
4
,

i.e.,

Fig. 3 Graphic illustration of the diffraction grating problem setup with 2 slits. Incident light propagates
through the slits—which along with the glass play the role of a phase function u—and shines on the
screen. The intensity IDG as a function of the position q is then recorded, to become a position-based
objective function
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Fig. 4 Approximate Pareto fronts, attained by the MO-CMA, of the competition between the intensity at
q0 = 0 to the intensity at each one of the positions q ¼ f0:1 � Tq; 0:25 � Tq; 0:5 � Tqg—formalized as bi-

criteria problems following Eq. 16 with n = 10 phase points. Given the fixed optical setup of the problem
(b = 1, h = 4), the positions of the competing points on the screen dictate the curvature of the Pareto
front

Fig. 5 The tri-criteria diffraction grating problem: approximate Pareto surface, attained by the steady-
state MO-CMA, of the competition between the intensities at q0 = 0, q1 ¼ 0:25 � Tq, and q2 ¼ 0:5 � Tq—

following Eq. 16 with n = 10 phase points
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f1 ¼ IDGð0;uÞ �! max

f2 ¼ IDG
p
4
;u

� �
�! max

ð17Þ

This test-case has a linear Pareto front; see Appendix 1 for the proof. Noise will be

modeled here as with a QC phase function (Eq. 6), i.e., additive Gaussian variations

on each phase coordinate:

~u ¼ uþN 0; �2
SI

� �
: ð18Þ

Upon consideration of the noise propagation, the mean and the variance of the

perceived fitness can be analytically derived (see Appendix 2). The mean may be

presented in a compact form,

h~fiðqi;uÞi ¼ expð��2
SÞ � fiðqi;uÞ

þ sinc2 qib

2

� 	
� 1� expð��2

SÞ
n

� 	
; ð19Þ

revealing both additive as well as multiplicative components to the disturbed

objective function values. The variance, although possessing a closed analytical

form, cannot be presented in a compact form, but rather in terms of explicit sum-

mation (Eqs. 50 and 53 are given in Appendix 2).

4.2 Simulated quantum control system: molecular alignment

We consider the QC application to dynamic molecular alignment, which has been

widely investigated in the past by means of noise-free simulations optimized by EAs

(see, e.g., [47, 48]). The time evolution of heteromolecular diatomic alignment is

quantum mechanically computed with the system starting either in the ground

rotational level (i.e., at zero temperature), or in a Boltzmann distribution of initial

states. The primary objective is maximization of molecular alignment, quantified by

the cosine-squared observable, O1 ¼ cos2ðhÞ, which considers the angle h of the

molecular axis with respect to the laser polarization axis. Figure 6 provides an

illustrative overview of the numerical process. This single-objective form was

extended to a bi-criteria framework [49, 50], considering additionally the demand

for low-intensity pulses, satisfied by minimizing second harmonic generation
(SHG). The bi-criteria formulation is thus posed as obtaining the Pareto front given

the following objectives:

f1 ¼ hcos2ðhÞi �! max

f2 ¼ SHGðEðtÞÞ ¼
Z1

�1

jEðtÞj4dt �! min: ð20Þ

For the explicit definition of the cosine-squared observable in f1 we refer the reader to

[51], while the electric field dependence in f2 follows the formulation in Eq. 3. The

values of both f1 and f2 are normalized to lie on the interval [0,1]. This bi-criteria
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molecular alignment problem was previously investigated only for the variant con-

sidering a distribution of initial rotational states [49, 50]. We shall study the problem

variant starting in the ground state [48], which constitutes a simulation with a duration

of 5sec per single evaluation. Even upon parallelization of the MO-CMA, we are still

facing computationally expensive calculations, which will practically limit the

employment of various strategies and in repeating runs to a certain degree, as will be

described. We consider a discretization of n = 80 points for the phase function.

We consider the introduction of noise to the phase pixels (Eq. 6), and incorporate

it into the simulation. In order to evaluate the effect of this noise on the objective

values f1 and f2, the Gaussian variation has to be explicitly propagated through the

Fourier transform and the Schrödinger equation. Such an analytical evaluation is

highly complex (especially for f1), generally unknown, and exceeds the scope of this

study.

It should be noted that the bi-criteria alignment problem was Pareto optimized by

different variants of the NSGA-II [49] and of the SMS-EMOA [50], and will be

introduced here to the MO-CMA algorithm.

4.3 Experimental QC system I: molecular ion generation

We consider the Pareto optimization of a QC experimental system in order to

examine the conflict between two competing quantum mechanical observables.

Total ion signal J Ion resulting from multi-photon ionization of nitromethane with

shaped, femtosecond pulses is examined with the goal of discovering a unique set of

ionizing pulses. However, due to the high photon numbers (^8 photons at 800 nm)

required for single pulse ionization, ion generation is predominantly dictated by

pulse intensity, which obfuscates sensitivity to detailed temporal control field

structure. This inherent intensity dependence is removed by additionally considering

Fig. 6 An overview of the numerical modeling of molecular alignment. The control function is the
spectral phase (circled, top left), the amplitude function is fixed and approximated by a Gaussian (bottom
left). The shaping process generates the electric field, E(t) (center), corresponding to Eq. 3. The
‘‘Schrödinger Box’’ of the alignment observable represents the numerical calculation of the interaction
between the electric field with the molecules, based on the specified quantum dynamics equations. The
revival structure (right) is the observed simulated behavior of the molecules, upon which the yield value
is based
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SHGa, where a = 2.5 in the present circumstance, as shown later in the inset of

Fig. 15 for the unshaped reference pulse. Towards this end, we seek to maximize

the ion signal with low-intensity pulses, which naturally results in a conflict between

J Ion and SHGa:

f1 ¼ J Ion �! max

f2 ¼ SHGa �! min: ð21Þ

The search is carried out by means of n = 80 independent phase pixels (see Eq. 4),

while J Ion is recorded with a mass spectrometer and SHG is monitored with a two-

photon diode.

4.4 Experimental QC system II: molecular plasma generation

As an extension of the molecular ion generation system, and as an application of the

aforementioned Optimal Dynamic Discrimination concept, we consider here an

equivalent conflict between competing plasma channels. Total free electron number

J Plasma resulting from multi-photon ionization of nitromethane with shaped,

femtosecond pulses is diagnosed with radar scattering. Shaping is performed with

the goal of discovering a unique set of ionizing pulses which discriminate against

background plasma generation. Here, also, due to the high photon numbers required

for single pulse ionization, electron generation is predominantly dictated by pulse

intensity. Equivalently, we seek to explore the conflict between J Plasma maximi-

zation and SHG minimization, in an effort to discover unique, non-intensity

dependent ionizing pulses:

f1 ¼ J Plasma �! max

f2 ¼ SHG �! min: ð22Þ

The search is carried out by means of n = 80 independent phase pixels (see Eq. 4),

while J Plasma is recorded with a microwave transmitter/receiver and SHG is

monitored with a two-photon diode.

The reader should keep in mind that despite some similarities in the two

aforementioned laboratory systems—i.e., Molecular Ion Generation (Sect. 4.3) versus

Molecular Plasma Generation (Sect. 4.4)—they possess very different experimental

designs, and most importantly, they are subject to fundamentally different underlying

physics. Table 1 summarizes the problems investigated in this study.

5 Practical observations

We describe here our observations of the three frameworks specified in the previous

section: Model landscapes, QC simulations, and QC experiments. Towards this end,

we adhere to the structured reporting scheme suggested by Preuss [52], starting by

posing the scientific question to answer. Each framework is treated by means of

relevant methodologies, which depend upon the research question as well as upon

the practical constraints (computational resources, experimental considerations,
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etc.). Section 5.1 focuses on the performance of the MO-CMA on the Multi-Sphere

landscape subject to noise. Section 5.2 considers the performance of several EMOA

on the Diffraction Grating problem. Section 5.3 reports on results of the simulated

Molecular Alignment problem, and finally, Sects. 5.4 and 5.5 present laboratory

results of the Molecular Ion Generation and Molecular Plasma Generation

problems, respectively.

Pre-Experimental Planning. The MO-CMA code relies on the Shark Library

release 2.2.11 [53]. The simulated systems2 are optimized by means of an extended

MPI-based parallel implementation to the Shark code, while the laboratory employs

an extended LabView version, which relies on Shark DLL’s. The default parameters

are kept, with a total population size of either lS = kS = 100 search points for the

simulations, or lL = kL = 50 search points in the laboratory. Random initialization

of search points is carried out uniformly in the interval [-10, 10]n for the Multi-

Sphere cases, and in [0, 2p]n otherwise. The initialization in the experimental

systems also relies on seed search points, which were obtained in single-objective

CMA-ES runs addressing a tailored ratio objective function.

The presentation of the results will include the archived perceived fronts attained

by the MO-CMA for all frameworks under investigation. For the two simulated

frameworks, we are in a privileged position to reevaluate archived solutions with

noise-free objective functions, and thus we shall present also the ideal fronts, which

are calculated a posteriori.

We would like to stress the fact that the perceived fronts, due to the elitist

strategy in use, are expected to represent the tail of the disturbance distribution, as

projected on the archived solutions. It is important to consider to what extent the

attained perceived front may be reconstructed de facto given the archived solutions.

Table 1 Summary of systems under investigation

Simulations: model landscapes (bi-/tri-criteria)

Problem name Formulation Dimensionality Noise levels

Multi-sphere Equation 11 n = {10, 30, 80} �2
x ¼ f0:001; 0:005; 0:01; 0:02; 0:05g

Diffraction grating Equations 15, 17 n = {10, 30, 80} �2
S ¼ f0:001; 0:005; 0:01; 0:02; 0:05g

Real-world simulator (bi-criteria)

Problem name Description Dimensionality Noise levels

Molecular alignment Equation 20 n = 80 �2
S ¼ f0:001; 0:005; 0:01; 0:02; 0:05g

Laboratory experiments (bi-criteria)

Problem name Description Dimensionality Measured noise level

Total-ion generation Equation 21 n = 80 �2
S � 0:01

Plasma generation Equation 22 n = 80 �2
S � 0:01

1 http://shark-project.sourceforge.net/.
2 A software package of the Diffraction Grating problem will be provided by the authors upon request.
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Therefore, we will generate statistical samples of each archived solution, subject to

the same noise conditions, and present additionally the nature of the obtained

distributions. We consider this a direct indication of the usefulness of the archived

solutions.

5.1 Preliminary: MO-CMA on the multi-sphere landscape

Research Question. How does noise on the decision parameters affect the MO-CMA

performance, if at all, and do any of the considered schemes of three parental

re-evaluation scenarios (Sect. 3.2) handle noise better?

Performance Criteria. In order to assess the quality of the obtained Pareto fronts

in the different noisy test-cases, we shall consider two performance criteria. Given

the attained hypervolume indicator values, Vi [54, 55] (also known as ‘S-Metric’

[56] or ‘Lebesgue Measure’ [57]), the first criterion is their relative deterioration
with respect to the hypervolume of the Pareto front obtained in noise-free

conditions, V�x¼0. This criterion will be assessed numerically, for which we set up

and test a corresponding quantifier:

DðiÞV ¼
V�x¼0 � Vi

V�x¼0

: ð23Þ

The second criterion is the spatial distribution of the attained front, for which we set

up and test a corresponding quantifier. In particular, given a final population of

size l, ff ðiÞk g
l
k¼1, sorted by means of partial order, let us consider its v2 value with

respect to a reference noise-free population, fpkg
l
k¼1, which toward this end rep-

resents a desired distribution of points along the front:

DðiÞD ¼
Xl

k¼1

kf ðiÞk � pkk
2

kpkk
� v2ðlÞ: ð24Þ

In essence, values given by Eqs. 23 and 24 reflect the degrees of deterioration in the

hypervolume and the spatial diversity, respectively, with respect to the noise-free

simulations.

5.1.1 Numerical results

Setup. We consider here the numerical results of the various simulations on the

Bi-Sphere model landscape. While the number of function evaluations per scheme

varied, due to the parental re-evaluation procedure, the number of total iterations

was fixed per search space dimensionality: numiter ¼ f104; 2 � 104; 5 � 104g for

n = {10, 30, 80}, respectively. Those values were set based on preliminary runs, in

which the MO-CMA converged to a highly-satisfying front, with minimal error

from the true Pareto front, and with a uniform distribution of points. For the

hypervolume calculations, a reference point at [2, 2] is considered.

Experimentation/Visualization. We focus on presenting statistical analyses of

specific test-cases, comparing the 3 different MO-CMA schemes. Overall, taking
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into account the a posteriori calculation, we shall have two sets of results per

procedure. Figure 7 depicts the statistical box-plots for DV values of the Multi-

Sphere landscape, taking into account only converged points in the box [0, 2]2 in the

objective space, for three test-cases: n = 10 with �2
x ¼ 0:05 (top), n = 30 with

�2
x ¼ 0:02 (middle), and n = 80 with �2

x ¼ 0:01 (bottom). Figure 8 depicts the

equivalent box-plots for the DD calculations (considering all 30 runs per case).

5.1.2 Discussion

While the perceived fronts given as output by the MO-CMA provide fair Pareto

approximations, with some expected error due to the presence of noise, an

examination of the actual archived solutions reveals an entirely different picture.

When exposed to noise on the decision parameters, the default MO-CMA is observed

to lack population diversity in the objective space for all search space dimensions

under investigation. This effect becomes evident upon the a posteriori noise-free

evaluation of the archived solutions: the outcome is several clustered points along the

perceived front, as depicted in Fig. 9. The lack of diversity continually worsens as the

expected disturbance increases, i.e., higher noise strength and higher dimensional-

ity lead to increased clustering. Figure 8 depicts box-plots for the DD values of 3

Bi-Sphere test-cases. While the raw DD values do not reflect the degree of discrepancy

by themselves, it is important to consider those values with respect to the perceived

front of the default MO-CMA, which typically obtains a fair approximation to the true

front given the disturbance. This effect may also be observed in Fig. 7, when noticing

the considerable counter-intuitive differences in the DV values between the default

MO-CMA (‘D’) and its a posteriori noise-free evaluation (‘D̂’).

The proposed explanation for the observed lack of diversity is the following.

During the run, search points which lead in the progress towards the Pareto front

generate offspring by means of Gaussian sampling (Eq. 9). Offspring with good

positions with respect to the front, especially whose disturbed fitness values lie

along the currently progressing front, are selected, and their decision parameters are

archived. While the perceived offspring’s point in the objective space may represent

a promising coordinate with respect to ranked domination as well as to hypervolume

contribution, its pre-image in the decision space is merely a small deviation from the

original parent. In practice, leading individuals take-over the population, since

generating offspring by means of small mutations in combination with the noise

disturbance is sufficient to span a fair distribution along the Pareto front. This

statement was numerically assessed by explicitly calculating the expected

distribution with the analytical forms of Eqs. 13 and 14, and it was furthermore

corroborated with the sampling of the actual archived Pareto optimal set of an

MO-CMA run. The aforementioned calculations are depicted in Fig. 9, which

provides a clear picture—the obtained clusters are the minimal configuration of
points for sampling the entire Pareto front with the current noise level, and
moreover, the perceived front can indeed be reconstructed by elitist selection of the
attained statistical sample. It is also evident from further calculations that the

number of clusters increases with the reduction of noise disturbance, as expected
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Fig. 7 Box-plots of DV values
(Eq. 23) over all converged
multi-sphere runs, of three test-

cases: n = 10 with �2
x ¼ 0:05

[top], n = 30 with �2
x ¼ 0:02

[middle], and n = 80 with �2
x ¼

0:01 [bottom]. The perceived
fronts of the three optimization
procedures, corresponding to the
three parental re-evaluation
scenarios (Sect. 3.2), are noted
as {D, E, O}. The ideal fronts
(noise-free evaluation of the
Pareto sets) are noted as

fD̂; Ê; Ôg. Each case consists
of 30 runs
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Fig. 8 Box-plots of DD values
(Eq. 24) over all converged
Multi-Sphere runs, of three test-

cases: n = 10 with �2
x ¼ 0:05

[top], n = 30 with �2
x ¼ 0:02

[middle], and n = 80 with �2
x ¼

0:01 [bottom]. The perceived
fronts of the three optimization
procedures, corresponding to the
three parental re-evaluation
scenarios (Sect. 3.2), are noted
as {D, E, O}. The ideal fronts
(noise-free evaluation of the
Pareto sets) are noted as

fD̂; Ê; Ôg. Each case consists
of 30 runs
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from Eqs. 13 and 14. This clustering effect may be considered as a multi-objective

generalization to the systematic overvaluation effect, as discussed by Arnold and

Beyer for the single-objective case in [44]. We thus claim that fitness disturbance in

multi-objective optimization is responsible for the low objective space diversity in

the archiving mechanism of the MO-CMA.

As a second routine employed, parental re-evaluation every generation clearly

hampered the performance of the default MO-CMA. The attained solutions

constitute worst quality sets, when compared to the default procedure, for all the

different test-cases under investigation. This poor performance may be clearly

observed in Figs. 7 and 8 when considering ‘E’/‘Ê’. The explanation for this

behavior is a stochastic disturbance to the archiving mechanism, which has a direct

negative impact on the consistency of the selection phase.

The third routine, MO-CMA with occasional parental re-evaluation (every 10

generations), seems empirically to be the best solution for the systematic

disturbance problem. While low population diversity, as assessed with DD values,

is still observed upon the a posteriori noise-free evaluation of the archived solutions,

the attained clusters are bigger in size, and closer to the true Pareto front.

Essentially, the archived solutions of this procedure are of the highest quality when

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Perceived Front

a  posteriori Front

Statistical Sampling

Fig. 9 Statistical sampling of the Pareto set attained by the MO-CMA on the Multi-Sphere with n = 10

at �2
x ¼ 0:01. The perceived Pareto front constitutes an excellent approximation to the true front, and the

a posteriori noise-free evaluation of its pre-images yields clusters along the front, whose sampling subject
to the same noise level yields the depicted cloud of points. The ellipses represent the disturbance
distributions, centered about the mean with twice the standard deviations as axes, based upon the
analytical forms of the perceived fitness in Eqs. 13 and 14. It is clear from these results that the clusters
are the minimal configuration of points for sampling the entire Pareto front, subject to elitism, with the
current noise level
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reconstructed a posteriori in comparison to the other procedures (see ‘O’/‘Ô’ in

Figs. 7 and 8). The perceived Pareto front is typically not as good as the one

attained by the default MO-CMA, but unlike the default procedure, the a posteriori

noise-free evaluation yields a better Pareto front in comparison to its perceived

front, and especially better than the post-default front. This effect is also visually

apparent when exploring the box-plots of both quantifiers and noting the inversion

of roles: while ‘D’ is always of higher quality than ‘D̂’, ‘O’ is of lower quality than

‘Ô’. We conclude that in line with the single-objective scenario, occasional parental

fitness re-evaluation seems to be superior with respect to no re-evaluation at all and

to re-evaluation in every generation.

5.1.3 Reference algorithms

We considered additional standard EMOA as reference methods to the MO-CMA,

in order to observe their behavior on the Multi-Sphere model landscape, subject to

the current modeling of noise. We carried out simulations on similar test-cases with

the NSGA-II [8] as well as with the SMS-EMOA [58]. We employ Deb’s operators

and his default settings for the NSGA-II.3 Regarding the SMS-EMOA, we follow

the settings described at [59].4 The population sizes are similar to those employed

by the MO-CMA. These settings hold for the application of both NSGA-II and

SMS-EMOA throughout the entire study. Typical runs of both algorithms on the

case of n = 10 with �2
x ¼ 0:01 are depicted in Fig. 10, presenting the perceived

fronts versus the a posteriori noise-free evaluation of the attained Pareto optimal

sets. The NSGA-II attained a perceived Pareto front which constitutes a good

approximation to the true front, and at the same time, the noise-free reconstruction

of the Pareto optimal set provides a reasonable front. The SMS-EMOA, on the other

hand, attained a perceived Pareto front which offers an excellent approximation to

the true front, and upon the noise-free re-evaluation of the Pareto optimal set the

reconstructed front is observed to lose its diversity to some extent. It should be

stressed that the absolute ‘clustering effect’ within the archiving mechanism, which

was typical of the MO-CMA, was not observed for these reference algorithms. This

might reflect the difference between an algorithm that is clearly designed for

learning distributions (i.e., employing statistical learning), such as the MO-CMA,

versus EMOA with traditional evolutionary core mechanisms, which evidently

operate in a naı̈ve way. Overall, in terms of the capacity to reconstruct Pareto

information out of the archived solutions, SMS-EMOA seems to perform best on the

Multi-Sphere noisy model landscape. A more comprehensive performance

comparison between these three EMOA will be carried out in the following section

with regard to the Diffraction Grating model landscape.

3 Source code of the NSGA-II algorithm used in this work was downloaded from the KanGAL

homepage: http://www.iitk.ac.in/kangal/.
4 Source code was provided by Michael Emmerich.
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5.1.4 Noisy tri-sphere simulations

Finally, we tested the behavior of the MO-CMA on the Tri-Sphere case (Eq. 11 with

m = 3). Toward this end, we employed a steady-state implementation which

reduces the extensive complexity of the hypervolume calculations. We provide here

a brief qualitative description of our observations. The MO-CMA obtained a good

approximate Pareto surface for the noise-free problem. Upon consideration of

systematic noise on the decision parameters, as done in the Bi-Sphere case, the

diversity loss effect in the archiving mechanism of the decision space is not

observed to be significant any longer, even at high noise levels of, e.g., �2
x ¼ 0:05.

We propose the following explanation for this observation: given the selection

mechanism of the MO-CMA, treatment of an additional objective reduces the

selection pressure. Lower pressure may thus reduce the probability of take-over,

which was our understanding of the mechanism for the ‘clustering effect’.

5.2 Diffraction grating: extensive performance comparison

Rather than considering the individual performances of the 3 MO-CMA schemes,

we present a comprehensive performance comparison between the default

MO-CMA, SMS-EMOA, and NSGA-II on the bi-criteria diffraction grating

problem in several dimensions and at various noise levels. As a secondary research
question, we aim at reporting on the MO-CMA behavior on this problem.

Let us begin by qualitatively describing the MO-CMA behavior on this search

problem, in light of the observation reported in Sect. 5.1. Figure 11 depicts typical

results of the MO-CMA on two variants of the Diffraction Grating problem with

n = 10 phase points at two noise levels. Equivalent to Fig. 9, the Pareto sets are

reconstructed a posteriori in noise-free evaluations, then statistically sampled at the

same noise levels of the evolutionary run, and compared to the perceived Pareto

fronts, given as output by the algorithm. As a reference, the ellipses representing the

noise distribution are plotted, according to Eqs. 19 (mean) and Eqs. 50–53

(a) (b)

Fig. 10 Typical runs of the reference EMOA on the noisy multi-sphere case of n = 10 with �2
x ¼ 0:01:

[LEFT (a)] NSGA-II versus [RIGHT (b)] SMS-EMOA. The figures depict the perceived fronts, the
a posteriori noise-free evaluation of the Pareto optimal sets, and the analytical Pareto front (Eq. 12)
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(variance; see Appendix 2). It is straightforward to observe the ‘clustering effect’ in

the archiving mechanism, similar to the one occurring in the Multi-Sphere case.

5.2.1 Numerical results

Setup. We consider here simulations on a specific case of the Diffraction Grating problem

(Eqs. 15 and 17 set up with b = 1, h = 4), in search space dimensions of

n ¼ 10; 30; 80f g, and at noise levels given by Eq. 10. We fix the total number of

function evaluations per search space dimensionality: numevals¼ 106;2�106;5�106
� �

for n¼ 10;30;80f g, respectively. For the hypervolume calculations, a reference point

at [0,0] is considered.

Experimentation/Visualization. Next, we shall consider the performance of the

three EMOA on the given Pareto problems, considering the hypervolume indicator

as the performance criterion. Based on the analytical expressions of the Pareto front

for this problem, given in Appendix 1, the hypervolume of the true front is

f
� ¼ 0:47482. Table 2 presents the mean and standard-deviations of the hypervo-

lume calculations over 30 runs of the attained Pareto fronts for the various test-

cases. The table contains the hypervolume values for the perceived fronts, as well as

for the noise-free a posteriori fronts. Table 3 provides the Mann-Whitney U-test

calculations for the pairwise algorithm comparisons corresponding to the test-cases

of Table 2.

5.2.2 Discussion

Given the numerical results in Table 2 and the statistical tests in Table 3, we

suggest the following observation: while the MO-CMA achieves superior hyper-

volume values on the 10-dimensional case, there is no clear winner on the

(a) (b)

Fig. 11 Statistical sampling of the Pareto optimal sets attained by the MO-CMA for two variants of the
Diffraction Grating problem with n = 10 phase points. Equivalent to Fig. 9, the Pareto sets are
reconstructed by means of noise-free evaluation, and compared to their statistical sampling at the noise
level of the evolutionary run, as well as to the perceived Pareto fronts, given as output by the algorithm.
As a reference, the noise distributions are depicted according to the analytical results of Eq. 19 (mean)
and Eqs. 50 and 53 (variance; see Appendix 2). a Maximization of IDG(q0 = 0) versus IDGðq ¼ 0:1 � TqÞ
at �2

x ¼ 0:01. b Maximization of IDG(q0 = 0) versus IDGðq ¼ 0:25 � TqÞ at �2
x ¼ 0:05
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30-dimensional case (see U-tests), and finally, the SMS-EMOA is the winner on the

80-dimensional cases. In the vast majority of the cases, the NSGA-II is

outperformed by its competitors.

We speculate whether the poor performance of the MO-CMA in the high-

dimensional cases in comparison to the SMS-EMOA is due to an insufficient budget

of function evaluations. Upon granting the MO-CMA additional function evalua-

tions for the high-dimensional cases this speculation is indeed corroborated. We

carried out 30 independent runs for the noise-free test cases of n = 30 and n = 80,

with 10 times the original budget of function evaluations, i.e., with 2 � 107 and

Table 3 Mann-whitney U-test calculations: the grating diffraction problem (b = 1, h = 4; q0 = 0,

q ¼ 0:5 � Tq; n = {10, 30, 80})

Noise

strength

Perceived A posteriori

CMA/

SMS

CMA/NSGA-

II

SMS/NSGA-

II

CMA/

SMS

CMA/NSGA-

II

SMS/NSGA-

II

n = 10

�2
S ¼ 0 ? ? ? ? ? ?

�2
S ¼ 0:001 & ? ? ? ? ?

�2
S ¼ 0:005 ? ? ? ? ? ?

�2
S ¼ 0:01 ? ? ? ? ? ?

�2
S ¼ 0:02 ? ? ? ? ? ?

�2
S ¼ 0:05 ? ? ? ? ? ?

n = 30

�2
S ¼ 0 & ? ? & ? ?

�2
S ¼ 0:001 - ? ? - ? ?

�2
S ¼ 0:005 & ? ? & ? ?

�2
S ¼ 0:01 - ? ? - ? ?

�2
S ¼ 0:02 & ? ? & ? ?

�2
S ¼ 0:05 & ? ? & ? ?

n = 80

�2
S ¼ 0 - ? ? - ? ?

�2
S ¼ 0:001 - ? ? - ? ?

�2
S ¼ 0:005 - & ? - & ?

�2
S ¼ 0:01 - & ? - & ?

�2
S ¼ 0:02 - & ? - & ?

�2
S ¼ 0:05 - - ? - - ?

A comparison is drawn from the numerical results of the 3 algorithms in the various test-cases, con-

sidering a null hypothesis H0 stating that there is no performance difference in terms of the attained

hypervolume, versus a hypothesis H1 stating that two algorithms have significantly different performance.

Accordingly, a table symbol of ± indicates a rejection of the null hypothesis at the 5 % significance

level, whereas a symbol of & indicates a failure to reject the null hypothesis at the 5 % significance level.

? refers to a statistically significant outperformance of the left-side algorithm over the right-side algo-

rithm, and - indicates the reverse scenario
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5 � 107 function evaluations, respectively. For the n = 30 test-case the MO-CMA

obtained a mean hypervolume value of 0.47465, whereas for the n = 80 test-case it

obtained a mean hypervolume value of 0.46089. Figure 12 depicts statistical box-

plots describing the miscellaneous runs granting the MO-CMA additional function

evaluations for the high-dimensional noise-free cases, presenting the attained

hypervolume values at specific milestones along the runs. As stated earlier, it is

indeed shown that the MO-CMA is slower than the SMS-EMOA for those

problems, but it is capable of eventually converging to a good approximate front,

given sufficient function evaluations.

The empirically observed slow progress rate may be attributed to the self-

adaptation mechanism which is typically responsible for the relatively long learning

period of the CMA-ES when compared to other strategies, e.g., ES with fewer

strategy parameters [60, 61]. Overall, it seems that employing the strong search-

engine of the CMA does not pay off on the Diffraction Grating problem upon

consideration of the reduced convergence speed in comparison to the SMS-EMOA.

5.3 Molecular alignment simulations

We consider the detailed effect of pixel noise on the quantum observables and the

overall MO-CMA performance.

Performance Assessment. In the context of molecular alignment (Eq. 20), f1 is of

particular interest, and thus is considered as the primary objective. The maximally

attainable theoretical upper bound that can be supported by the utilized rotational

states used here was found to be 0.9863 [48], but the best known single-objective f1
yield within the current bandwidth discovered by an ES was reported to be 0.962

[48], with a corresponding f2 value of 0.154. The nature of the conflict between f1 to

(a) (b)

Fig. 12 Granting the MO-CMA additional function evaluations for the noise-free Diffraction Grating
problem. Statistical box-plots of 30 independent runs, presenting the attained hypervolume values at
specific milestones along the run, with up to 10 times the original budget of function evaluations. [LEFT,
(a)] n = 30, where the algorithm obtains the maximally attainable hypervolume in all runs, without

exception, after 2 � 107 function evaluations; [RIGHT, (b)] n = 80, where the majority of the runs obtain

the maximally attainable hypervolume after 5 � 107 function evaluations
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f2 is generally unknown, and we shall use our noise-free runs as a reference Pareto

front for the runs on noisy systems.

Setup. Due to computational limitations, we set a limit of 10 runs per test-case.

Preliminary runs of MO-CMA, SMS-EMOA and NSGA-II on the noise-free

simulation are carried out as an introductory comparison. Furthermore, we will take

into account systems with noisy controls subject to the noise strength values of

Eq. 10. Each run is limited to 1000 iterations.

Preliminary: EMOA Noise-Free Comparison. The noise-free runs yielded

disconnected local Pareto fronts, which offered limited coverage of the objective

space per run. This may suggest that the search space is broken into separate

regions, partitioned by barriers, possibly due to the inherent constraints on the

system, e.g., the bandwidth, the discretization, etc. We reconstructed a single Pareto

front from these runs, referred to here as the best known Pareto front. The shape of

the attained front indicates that the conflict is rather soft, as high f1 values may be

obtained while keeping f2 values extremely low. There seems to be no considerable

pay-off in f1 when unleashing f2. Furthermore, from a practical perspective one may

argue that this conflict is irrelevant, as the observed f2 values are sufficiently low. It

should also be noted that f1 values of &0.96 could not be attained in these runs; the

best obtained value was f1
* = 0.947, corresponding to f2

* = 0.165. This observation

may be linked to previous reports on the single-objective CMA-ES applied to this

problem [48], investigating its performance in maximizing f1 subject to various

parametrizations. In particular, the so-called ‘plain’ parametrization, where the

decision variables correspond to the phase function pixels, was observed to be

inferior in comparison to specific polynomial-based configurations, where the

decision variables played the role of coefficients of complete-basis functions. In

[48], following an empirical comparison, the Hermite polynomials were reported to

perform best. Here, we carried out additional calculations, employing the Hermite

parametrization, in order to assess the latter observation. The results, which are

depicted in Fig. 13, generalize the observation reported in [48] into the bi-criteria

picture, confirming that the MO-CMA is capable of attaining f1 values of &0.96

when special configurations are in use. Moreover, it confirms that the inherent

advantage of the Hermite parametrization in terms of f1 values translates into a

trade-off with slightly higher f2 values. Concerning the competing SMS-EMOA and

NSGA-II algorithms, it is clearly observed that they present inferior performance,

especially with respect to the coverage of f1 values. In total, their results are

disappointing, but at the same time are in some consistency with previous

observations on a different variant of this problem (see, e.g., [49]).

Observation: MO-CMA on Noisy Systems. In what follows, we consider the

MO-CMA alone on the noisy alignment problem. When subject to noise, the

MO-CMA seems to perform well, especially with its default procedure, in

obtaining fair Pareto fronts, in comparison to the noise-free simulations. As in the

noise-free case, the attained fronts were typically broken, and we reconstructed

them into a single front for their presentation. In some cases, the perceived Pareto

fronts of the noisy system dominated the best known front, and the a posteriori

noise-free evaluation of the archived phase functions introduced a local

improvement to the best known front. This is an example of a scenario in which
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fitness overvaluation has the potential to enhance the search. However, the

reproduction of the Pareto front by evaluating the Pareto optimal set typically

failed, suggesting that decision space information was lost, as was observed on the

model landscapes. Figure 14a depicts the attained front of the default MO-CMA

procedure in a noisy system of �2
S ¼ 0:01. The plot contains the reconstructed

Pareto front of 10 runs, the best known front, the a posteriori noise-free evaluation

of the Pareto optimal set, as well as the noisy sampling of the Pareto optimal set.

Close examination of the a posteriori sampled data and their grouping towards the

perceived front reveals interesting insight into the noise propagation through the

two objective functions (Fig. 14b). It is evident that noisy sampling of a phase

function corresponding to a point on the perceived front results in an elliptic cloud

of points, whose elitist outliers constitute the points of the perceived front, as in

the model landscapes (see, e.g., Fig. 9). Also, it is clear that these clouds have a

dominant horizontal axis in the current scaling. This observation suggests that the

alignment observable (f1) is sensitive to noise, unlike SHG (f2), which is hardly

affected by it at the current noise level. Moreover, the shape of these clouds seems

to be dependent upon the two objective values through a multiplicative relation:

points with low f1 values possess a longer horizontal axis and a shorter vertical

axis in comparison to points with higher f1 values.

It should be noted that the simulations at higher noise levels obtained reasonable

Pareto fronts in comparison to the noise-free best known front, but their

reproduction by means of evaluation with the attained Pareto optimal set failed,

as found on the Multi-Sphere model landscape. The simulations also revealed that

the two procedures with additional parental fitness re-evaluations produced Pareto

fronts of low quality, as they were typically dominated by the default MO-CMA

Fig. 13 Attained Pareto fronts on the noise-free molecular alignment simulation of 4 EMOA routines:
MO-CMA with ‘plain’ parametrization (decision variables are directly addressed as phase points), MO-
CMA with Hermite parametrization (decision variables correspond to coefficients of the first 40 Hermite
polynomials, spanning altogether the phase), SMS-EMOA, and NSGA-II. Each front is reconstructed of
10 runs per routine
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procedure. In some cases, however, it is evident that local a posteriori Pareto fronts

of the procedure with occasional parental re-evaluation locally dominated the

equivalent fronts of the default procedure. Overall, there is no clear superior

procedure in this test-case.

5.4 Laboratory experiment I: molecular ion generation

An experimental Pareto front for the molecular ion generation system is depicted in

Fig. 15. The shape of the front has been assessed with high confidence, based on

numerous runs of the single-objective (l, k)-CMA-ES on the corresponding tailored

ratio objective function, i.e., J Ion

SHGa. We therefore conclude that the MO-CMA

obtained a perceived Pareto front consistent with the repeated aforementioned

single-objective optimization results, but nevertheless, its reconstruction by means

of the attained Pareto set was not successful, as observed with both the Multi-Sphere

and the molecular alignment problems. It is evident in Fig. 15 that while the

perceived Pareto front dominates the unshaped control reference front, the mean

values of the a posteriori sampling of the Pareto set produces a dramatically worse

front, which is Pareto indifferent to the unshaped reference front. In addition, the

attractive knee point (roughly located around coordinate (0.425, 0.2)) could not be

reconstructed, and its information was practically lost. Upon consideration of the

experimental data, the perceived point appears to be an experimental outlier, which

dominated a converging local Pareto front in that region and led to its loss.

However, it is crucial to note that this specific knee area represents a real domain of

solutions that has been identified in repeated occasions, whose Pareto coverage is

much needed. Strategies that were reported to successfully target knee areas—e.g.,

(b)(a)

Fig. 14 The attained reconstructed Pareto front of the default MO-CMA on the noisy alignment

simulation with �2
S ¼ 0:01. a The reconstructed perceived front of 10 runs, the best known front, the

a posteriori noise-free evaluation of the Pareto optimal set, and the a posteriori noisy sampling of the
Pareto optimal set. b Statistical examination of the a posteriori sampling of selected points of the Pareto

optimal set. Each sampling set comprises 100 evaluations at the noise level of �2
S ¼ 0:01. The ellipses

represent the disturbance distributions, centered about the mean with twice the standard deviations as
axes, based upon statistics of the attained data. As in the model landscapes (see, e.g., Fig. 9), the
perceived front constitutes an elitist selection of these distributions. The reader should mind the different
horizontal scaling of the two panels
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MOEA/D [62] or by means of controllable focus [63]—could be utilized in this case

towards this end. Unfortunately, conducting additional runs by means of alternative

strategies introduced an experimental overhead, and thus was not carried out. The

second QCE system, Molecular Plasma Generation, possesses higher experimental

stability, granted by the different experimental design. It has therefore been targeted

as a platform for testing the re-evaluation approach and thus to address the issues

revealed with the current experimental system. Moreover, it allowed for a

comparison between various strategies, as will be described in the following section.

5.5 Laboratory experiment II: molecular plasma generation

Taking advantage of the experimental stability of this system, we carried out a

Pareto optimization campaign by means of the EMOA considered in the current

study. In particular, we compared the experimental performance of the MO-CMA

(default and with occasional parental re-evaluation), to the NSGA-II and the SMS-

EMOA. The observation here is clear, as well as consistent with the previous

observations on the other systems: The default MO-CMA produced highly-

satisfying perceived fronts, but suffered from an inability to reproduce them upon

the termination of the runs. The NSGA-II, on the other hand, performed poorly, and

failed to obtain good approximations to the Pareto front. The remaining strategies,

MO-CMA with occasional re-evaluation and the SMS-EMOA, both performed

well—the attained approximate fronts were satisfying, and their post-reproduction

was successful. Figure 16 presents successful runs of both strategies, depicting the

perceived fronts, their reproduction, and the unshaped reference fronts (measured

upon scanning the amplitude of an unshaped pulse). Since the latter represents a

trivial reference to pulse shaping, and especially to any QC optimization scheme,

we argue that the QC optimization pay-off in the multi-objective case may be

assessed by the calculation of the hypervolume ratio between the attained front to

the unshaped reference front. Overall, the MO-CMA with occasional parental

Fig. 15 Experimental Pareto front of the default MO-CMA on the total ionization J Ion versus SHG
problem. The figure depicts the perceived front of a single experiment, the reference front of the intensity
based non-shaped pulse, as well as a sampling of the Pareto set. Inset: single-objective ratio picture
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re-evaluation performed best, introducing a hypervolume improvement of 24.5 %

with respect to the unshaped reference. The SMS-EMOA, on the other hand,

introduced an insignificant improvement of merely 3 %, due to bad coverage. The

success of the occasional re-evaluation scheme within the MO-CMA proved to be

especially beneficial in this case, and thus constitutes an experimental corroboration

to the conclusions drawn on noisy model landscapes (see Sect. 5.1). Figure 17

depicts the evolving hypervolume pay-off of the MO-CMA population—presented

as the ratio between the raw MO-CMA hypervolume to the hypervolume of the

unshaped reference front—corresponding to the run presented in Fig. 16a. For the

hypervolume calculations, a reference point at [0, 1] is considered. The initial high

values of the ratio around 0.9 are a consequence of planting seed solutions in the

initial population. It can be clearly observed that the occasional re-evaluation (every

10 generations) introduces corrections to fitness disturbances of the parental

population that translate into hypervolume declines. In particular, note the dramatic

decline following the re-evaluation of generation 30—had not this correction

occurred, the parental population would have been contaminated by extreme

outliers and the run would have been affected accordingly. At the same time, the

re-evaluation scheme does not hamper the general trend of hypervolume increase,

and thus offers an efficient solution to the previously reported problem. We

therefore conclude that this self-correcting property of the occasional re-evaluation

scheme is essential for experimental scenarios.

6 Summary

This paper introduced the topic of Multi-Observable Quantum Control and

promoted its platform as a testbed for evolutionary experimental multi-objective

optimization. It discussed various practical issues concerning this experimental

(a) (b)

Fig. 16 Experimental Pareto fronts for the Molecular Plasma Generation problem (maximizing free
electron number J Plasma versus minimizing SHG), for the MO-CMA with occasional re-evaluation
(a) and for the SMS-EMOA (b). Each figure depicts the perceived front of a single experiment, the
reference front of the intensity based non-shaped pulse, as well as the reproduction of the Pareto optimal
set upon the termination of the run
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domain, such as the sources of noise and uncertainty, and predominantly considered

the MO-CMA as the optimization method. Several frameworks were targeted for

testing—two noisy model landscapes, as well as multiple QC systems: one

simulated and two experimental. Towards this end, we introduced here a family of

test-functions, originating from the optical domain of Diffraction Grating problems,

which can provide model landscapes for Pareto optimization. Their attractiveness

lies particularly within the simple, yet full mathematical formulation as well as

within the practical linkage to real-world experiments. Overall, this effort

constituted a broad study of the MO-CMA especially on bi-criteria problems,

subject to fitness disturbance of noisy decision parameters on simulated systems,

and its deployment in QC laboratory experiments.

While the MO-CMA excels in Pareto optimization of noise-free model

landscapes, it has been observed in the current study that there exists a considerable

discrepancy between the perceived Pareto front, given as the output by the

algorithm, compared to the a posteriori evaluation of its pre-images, on both model

landscapes. We proposed an explanation for this significant deviation, stating that

the MO-CMA optimally exploits the disturbance distribution and converges to the

minimal number of search points required to fully span the perceived front. As we

demonstrated on the Bi-Sphere case, occasional parental fitness re-evaluation

improved the MO-CMA performance and thus constituted a solution to the problem.

We set up a comparison between the MO-CMA and two conventional EMOA,

namely NSGA-II and SMS-EMOA, on the Diffraction Grating test problem. While

the MO-CMA was the clear winner in low search space dimensions, it suffered from

Fig. 17 The evolving hypervolume pay-off of the parental population of the MO-CMA with
re-evaluation every 10 generations, with respect to the unshaped reference front, corresponding to the
run depicted in Fig. 16a. The periodic re-evaluation corrects fitness disturbances within the parental
population, and causes the occasional hypervolume declines. It does not, however, hamper the general
trend of hypervolume increase in the course of the entire run. For the hypervolume calculations, a
reference point at [0,1] was considered
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slow progress rates in higher-dimensions (n = 80), likely due to its self-adaptation

mechanism, and required a significant increase in function evaluations in order to

converge to the true Pareto front. In those cases, the SMS-EMOA performed better,

and provided a fair approximate front within the original budget of function

evaluations.

The application of the MO-CMA to the simulated noisy QC alignment system

was successful in terms of revealing the physics conflict between the investigated

objectives, and providing a reliable Pareto front considering the noise-free

calculations. The quality of the Pareto optimal set was questionable, since the

perceived front could not be recovered to a satisfactory degree. Concerning the

reference algorithms, both SMS-EMOA and NSGA-II performed poorly in

comparison to the MO-CMA, and failed to cover an important area of the Pareto

front. The results here constitute an example of a scenario where there is clearly no

best algorithm for a set of problems, especially when practical experimental

requirements, e.g., a fixed budget of function evaluations, are imposed on the

search. This observation can be considered as a practical interpretation to the

so-called No Free Lunch theorem (see, e.g., [64]).

The laboratory experiments—the practical climax of this work—allowed us to

examine the proposed algorithmic framework in real-world experimental scenarios.

We assessed the conflict between competing objectives for two experimental

quantum systems, and provided interesting Pareto fronts which proved to be reliable

with high confidence. The first experimental case of molecular ion generation
considered only the default MO-CMA routine, due to instability and laboratory

overhead. The Pareto front in this case could not be recovered upon evaluation of

the Pareto optimal set, consistent with the previous observations of this work on

model landscapes. The second experimental case of the molecular plasma
generation system was extensively explored by means of various EMOA, and the

results led to important practical conclusions. The MO-CMA with occasional

parental re-evaluation performed best, obtained an excellent pay-off with respect to

the standard unshaped reference, and the reproduction of its attained Pareto front

was successful. Examination of its evolving hypervolume revealed the self-

correcting property of the re-evaluation scheme, which overall proved to be

essential in this experimental scenario. We therefore conclude that the MO-CMA

with occasional re-evaluation, which introduces a basic yet effective extension to an

existing EMOA, constitutes a powerful and reliable routine for experimental high-

dimensional continuous Pareto optimization.

We would like to propose lines of future work. In light of recent publications

introducing and assessing various EMOA [65, 66], it would be very interesting to

utilize reference methods discussed therein on the systems presented in the current

study. Given the conclusions regarding MO-CMA drawn here, the formulation of

algorithmic solutions to that method is needed. In addition, sensitivity of auxiliary

strategy parameters, including a parameter that was introduced here (the parental

re-evaluation epoch) should be investigated. In a different direction, future research

may also incorporate into multi-objective experimental optimization advanced

features that have the potential to capture various decision making preferences, such
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as Pareto-compliant indicators [67], or the enhancement of decision-space diversity

[68–70].
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Appendix 1: The diffraction grating problem analytical expression
of the 2-dimensional Pareto front

We consider here a specific instantiation of the Diffraction Grating problem, as

formulated in Eq. 17 with b = 1, h = 4. Let n 2 N and n C 2, we then define:

|1 ¼ JDGð0;uÞ ¼ nþ 2 �
X

n [ ‘[ k	 0

cos½ul � uk�

|2 ¼ JDG
p
4
;u

� �
¼ nþ 2 �

X
n [ ‘[ k	 0

cos½pð‘� kÞ þ ul � uk�
ð25Þ

Let:

D ¼ fðx; yÞ 2 R
2 n 9u 2 ½0 2p�n : x ¼ |1ðuÞ ^ y ¼ |2ðuÞg

Theorem 1 The Pareto front PFð|Þ of |ðuÞ ¼ ð|1ðuÞ; |2ðuÞÞT for u 2 ½0 2p�n is

PFð|Þ ¼ fð|1; |2ÞT 2 ½d n2�2 n |1 þ |2 ¼ n2 þ dg ð26Þ

with

d ¼ 0 if n ¼ 2ı; ı 2 N

1 otherwise

�

Proof Let us consider n even (i.e., d = 0), the proof for n odd is similar. The proof

is carried out in two steps:

– We prove that D 
 F ¼ fðx; yÞ 2 ½0 n2�2 n xþ y� n2g
– We prove that 8ðx; yÞ 2 F such that

xþ y ¼ n29u 2 ½0 2p�n

with x ¼ |1ðuÞ and y ¼ |2ðuÞ.

First, notice that:

|1ðuÞ ¼
Xn�1

k¼0

eiuk














2

; |2ðuÞ ¼
Xn�1

k¼0

ð�1Þkeiuk














2

Hence, 8u 2 ½0 2p�n |1	 0 and |2	 0:
We start by rewriting the functions |1 and |2 in order to eliminate the p factor in

the cosine arguments of |2 :
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|1ðu0; . . . ;un�1Þ ¼ nþ 2 �
Xn�2

k¼0

Xn�1

l¼kþ1

cos½ul � uk�

|2ðu0; . . . ;un�1Þ ¼ nþ 2 �
Xn�2

k¼0

Xn�1

l¼kþ1

cos½pðl� kÞ þ ul � uk�

|1ðu0; . . . ;un�1Þ ¼ nþ 2 �
Xn�2

k¼0

Xn�1�k

l¼1

cos½ukþl � uk�

|2ðu0; . . . ;un�1Þ ¼ nþ 2 �
Xn�2

k¼0

Xn�1�k

l¼1

cos½plþ ukþl � uk�

Since n is even and greater than 2, 9m 2 N n = 2(m ? 1).

1

2
|1ðu0; . . . ;un�1Þ ¼ ðmþ 1Þ þ

Xm

p¼0

X2mþ1�2p

l¼1

cos½u2pþl � u2p�

þ
Xm�1

p¼0

X2m�2p

l¼1

cos½u2pþ1þl � u2pþ1�

1

2
|2ðu0; . . .;un�1Þ ¼ ðmþ 1Þ þ

Xm

p¼0

X2mþ1�2p

l¼1

cos½lpþ u2pþl � u2p�

þ
Xm�1

p¼0

X2m�2p

l¼1

cos½lpþ u2pþ1þl � u2pþ1� ð27Þ

1

2
|1ðu0; . . . ;un�1Þ¼ ðmþ1Þ

Xm

p¼0

Xm�p

q¼0

cos½u2pþ2qþ1�u2p�

þ
Xm�1

p¼0

Xm�p

q¼1

cos½u2pþ2q�u2p�

þ
Xm�1

p¼0

Xm�p�1

q¼0

cos½u2pþ2þ2q�u2pþ1�

þ
Xm�1

p¼0

Xm�p

q¼1

cos½u2pþ1þ2q�u2pþ1�

1

2
|2ðu0; . . . ;un�1Þ¼ ðmþ1Þ�

Xm

p¼0

Xm�p

q¼0

cos½u2pþ2qþ1�u2p�

þ
Xm�1

p¼0

Xm�p

q¼1

cos½u2pþ2q�u2p��
Xm

p¼0

Xm�p�1

q¼0

� cos½u2pþ2þ2q�u2pþ1�þ
Xm�1

p¼0

Xm�p

q¼1

cos½u2pþ1þ2q�u2pþ1�

ð28Þ
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upon considering all the cosines having values of ±1, we may write:

D 
 ½0 n2�2

Moreover, we have:

1

2
ð|1 þ |2Þ ¼ 2ðmþ 1Þ þ 2

Xm�1

p¼0

Xm�p

q¼1

cos½u2pþ2q � u2p�

þ 2
Xm�1

p¼0

Xm�p

q¼1

cos½u2pþ1þ2q � u2pþ1� ð29Þ

which leads to:

|1 þ |2� n2 ð30Þ

Hence, D 
 F ¼ fðx; yÞ 2 ½0 n2�2 n xþ y� n2g ð31Þ

In what follows, we shall show that this upper bound is indeed reached:

Given L ¼ 1
2
ð|1 þ |2Þ, it reaches its global maximum if and only if, 8p 2 ½0 m�

and l such that 2p ? 2l B n and 2pþ 1þ 2l� n� 1 9kij; k
0
ij 2 Z such that:

u2pþ2l ¼ u2p þ 2klpp ð32Þ

u2pþ1þ2l ¼ u2pþ1 þ 2k0lpp ð33Þ

Let us consider u satisfying Eqs. 32 and 33:

|1ðu0; . . . ;un�1Þ ¼
1

2
n2ð1þ cosðu1 � u0ÞÞ

|2ðu0; . . . ;un�1Þ ¼
1

2
n2ð1� cosðu1 � u0ÞÞ;

where u1 � u0 takes any value in [0 2p]. Since h 2 ½0 2p� ! cosðhÞ 2 ½�1 1� is a

surjective function, we can conclude that for all ðx; yÞ 2 ½0 n2�2 such that xþ y ¼
n2 9u 2 ½0 2p�n such that x ¼ |1ðuÞ and y ¼ |2ðuÞ. This concludes the proof. h

Appendix 2: Diffraction grating noise propagation

We provide here explicit calculations of the mean and variance for the perceived

objective function of the Diffraction Grating model landscape, described in Sect. 4.

Diffraction grating mean

Consider the intensity function, IDG, presented in Eq. 15, which may be written as
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IDGðf;uÞ ¼
1

n2
sinc2 fb

2

� 	
� JDGðf;uÞ

JDGðf;uÞ ¼ nþ 2 �
X
‘[ k

cos½fhð‘� kÞ þ Du‘k�
ð34Þ

where the compact double-sum notation is used for convenience. Given a disturbed

phase vector, ~u, following Eq. 18

~u ¼ ðu0 þ du0;u1 þ du1; . . . ;un�1 þ dun�1ÞT ð35Þ

it thus suffices to investigate the propagation of the noise through JDG only:

~JDGðf; ~uÞ ¼ nþ 2 �
X
‘[ k

cos½fhð‘� kÞ þ D~u‘k� ð36Þ

Note that

du‘�Nð0; �2Þ
du‘k � du‘ � duk�Nð0; 2�2Þ

ð37Þ

Given the probability density function of the normal distribution, denoted as

Uðz; l; r2Þ, the expectation values of the cosine and sine functions considering a

distribution with zero mean read:

Z1

�1

Uðz; 0; r2ÞcosðzÞdz ¼ exp � r2

2

� 	

Z1

�1

Uðz; 0; r2ÞsinðzÞdz ¼ 0

ð38Þ

Eq. 36 can now be rewritten as:

~JDG ¼ nþ 2 �
X
‘[ k

cos½fhð‘� kÞ þ Du‘k þ du‘k�

¼ nþ 2 �
X
‘[ k

cosða‘kÞcosðdu‘kÞ � sinða‘kÞsinðdu‘kÞ
ð39Þ

where a‘k � fhð‘� kÞ þ Du‘k. Upon calculating the expectation values, using

Eq. 38, one may write:

h~JDGi ¼ nþ 2 �
X
‘[ k

cosða‘kÞhcosðdu‘Þi � 2 �
X
‘[ k

sinða‘kÞhsinðdu‘kÞi

¼ nþ 2 �
X
‘[ k

cosða‘kÞ � expð��2Þ ¼ nþ 2 � expð��2Þ �
X
‘[ k

cosða‘kÞ; ð40Þ

concluding with

h~JDGi ¼ n � ð1� expð��2ÞÞ þ expð��2Þ � JDG ð41Þ

The transition to h~IDGi is trivial with Eq. 34, yielding the result of Eq. 19.
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Diffraction grating variance

VAR½~JDG� ¼ h~JDG
2i � h~JDGi2

From Eq. 41, h~JDGi2 is trivial. We now have to compute h~JDG
2i. In order to do so,

let us first compute the mean of this easier term:

~JDG � n

2

� 	2

¼
X

l1 [ k1

X
l2 [ k2

ðcosðal1k1
Þcosðdul1k1

Þ � sinðal1k1
Þsinðdul1k1

ÞÞ

� ðcosðal2k2
Þcosðdul2k2

Þ � sinðal2k2
Þsinðdul2k2

ÞÞ

Let (for j = 1, 2)

ca
j ¼ cosðaljkj

Þ ; sa
j ¼ sinðaljkj

Þ; cd
j ¼ cosðduljkj

Þ; cd
j ¼ cosðduljkj

Þ
Cl1l2k1k2

¼ ca
1ca

2cd
1cd

2 þ sa
1sa

2sd
1sd

2 � 2ca
1sa

2cd
1sd

2

�
~JDG � n

2

� 	2

¼
X

l1 [ k1

X
l2 [ k2

Cl1l2k1k2
ð42Þ

We divide the set LK ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2g, to which

belong (l1, k1, l2, k2), into the six following subsets which form a partition:

LK ¼ LKindpt [ LKlklk [ LKl:l: [ LKl::l [ LK:k:k [ LK:kk:

Consequently, the sum in Eq. 42 may be divided into six sums, and we note:

~JDG � n

2

� 	2

¼
X

LKindpt

Cl1l2k1k2
þ
X
LKlklk

Cl1l2k1k2
þ
X
LKl:l:

Cl1l2k1k2

þ
X
LKl::l

Cl1l2k1k2
þ
X
LK:k:k

Cl1l2k1k2
þ
X
LK:kk:

Cl1l2k1k2

with

LKindpt ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2 ^ l1 6¼ l2 ^ l1

6¼ k2 ^ k1 6¼ k2 ^ k1 6¼ l2g
LKlklk ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2 ^ l1 ¼ l2 ^ k1 ¼ k2g
LKl:l: ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2 ^ l1 ¼ l2 ^ k1 6¼ k2g
LKl::l ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2 ^ l1 ¼ k2g
LK:k:k ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2 ^ k1 ¼ k2 ^ l1 6¼ l2g
LK:kk: ¼ fðl1; k1; l2; k2Þ 2 ½0. . .n� 1�4=l1 [ k1 ^ l2 [ k2 ^ k1 ¼ l2g

Additionally, we note that
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]ðLKÞ ¼ nðn� 1Þ
2

� 	2

]ðLKlklkÞ ¼
nðn� 1Þ

2

]ðLKl:l:Þ ¼ ]ðLK:k:kÞ

¼ 1

6
nðn� 1Þð2n� 1Þ þ 1

2
ð3� 2nÞnðn� 1Þ þ nðn� 1Þðn� 2Þ

]ðLKl::lÞ ¼ ]ðLK:kk:Þ ¼ �
1

6
nðn� 1Þð2n� 1Þ þ 1

2
nðn� 1Þ2

]ðLKindptÞ ¼
nðn� 1Þ

2

nðn� 1Þ
2

� 2nþ 3

� 	

Explicit summation

First, consider the following useful results:

hcosðdulÞi ¼ exp � �
2

2

� 	

hcosðdulkÞi ¼ expð��2Þ
hsinðdulkÞi ¼ 0

hcosð2dulkÞi ¼ expð�4�2Þ

hcosðdulkÞ2i ¼
1

2
ð1þ expð�4�2ÞÞ

hcosðdulkÞsinðdulrÞi ¼ 0

hsinðdulkÞ
2i ¼ 1

2
ð1� expð�4�2ÞÞ

hcosðdulkÞcosðdulrÞi ¼
1

2
ð1þ expð�2�2ÞÞexpð��2Þ

hsinðdulkÞsinðdulrÞi ¼
1

2
ð1� expð�2�2ÞÞexpð��2Þ

We then have:

LKindpdt

X
LKindpdt

Cl1l2k1k2

* +

¼
X

LKindpdt

ca
1ca

2hcd
1ihcd

2i þ sa
1sa

2hsd
1ihsd

2i � 2ca
1sa

2hcd
1ihsd

2i

¼ expð�2�2Þ
X

LKindpdt

cosðal1k1
Þcosðal2k2

Þ ð43Þ
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LKlklk

X
LKlklk

Cl1l2k1k2

* +

¼
X
LKlklk

ðcaÞ2hðcdÞ2i þ ðsaÞ2hðsdÞ2i � 1

2
s2ahs2di

¼ nðn� 1Þ
4

þ expð�4�2Þ
2

X
l [ k

cosð2alkÞ ð44Þ

LKl:l:

X
LKl:l:

Cl1l2k1k2

* +

¼
X
LKl:l:

ca
1ca

2hcosðdulkÞcosðdulrÞi þ sa
1sa

2hsinðdulkÞsinðdulrÞi

� 2ca
1sa

2hcosðdulkÞsinðdulrÞi

¼ 1

2
expð��2Þ

X
LKl:l:

cosðalk � alrÞ þ expð�2�2Þcosðalk þ alrÞ ð45Þ

LKl::l

X
LKl::l

Cl1l2k1k2

* +

¼
X
LKl::l

ca
1ca

2hcosðdulkÞcosðduslÞi þ sa
1sa

2hsinðdulkÞsinðduslÞi

� 2ca
1sa

2hcosðdulkÞsinðduslÞi

¼ 1

2
expð��2Þ

X
LKl::l

cosðalk þ alrÞ þ expð�2�2Þcosðalk � alrÞ ð46Þ

LK:k:k

X
LK:k:k

Cl1l2k1k2

* +

¼
X
LK:k:k

ca
1ca

2hcosðdulkÞcosðduskÞi þ sa
1sa

2hsinðdulkÞsinðduskÞi

� 2ca
1sa

2hcosðdulkÞsinðduskÞi

¼ 1

2
expð��2Þ

X
LK:k:k

cosðalk � askÞ þ expð�2�2Þcosðalk þ askÞ ð47Þ
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LK:kk:

X
LK:kk:

Cl1l2k1k2

* +

¼
X
LK:kk:

ca
1ca

2hcosðdulkÞcosðduksÞi þ sa
1sa

2hsinðdulkÞsinðduksÞi

� 2ca
1sa

2hcosðdulkÞsinðduksÞi

¼ 1

2
expð��2Þ

X
LK:kk:

cosðalk þ aksÞ þ expð�2�2Þcosðalk � aksÞ ð48Þ

Conclusion

From Eqs. 43–48 we may write:

~JDG � n

2

� 	2
* +

¼ nðn� 1Þ
4

þ expð�4�2Þ
2

X
l [ k

cosð2alkÞ

þ expð�2�2Þ
X

LKindpdt

cosðalkÞcosðarsÞ

þ 1

2
expð��2Þ

X
LKl:l:[LK:k:k

cosðalk � arsÞ þ expð�2�2Þcosðalk þ arsÞ
"

þ
X

LKl::l[LK:kk:

cosðalk þ arsÞ þ expð�2�2Þcosðalk � arsÞ
#

ð49Þ

concluding with:

VAR½~JDG� ¼ nðn� 1Þð1� expð�2�2ÞÞ� 2expð�2�2Þð1� expð�2�2ÞÞ
X
l[k

cosð2alkÞ

þ 2expð��2Þð1� expð��2ÞÞ
X

LKl:l:[LK:k:k

cosðalk� arsÞþ
X

LKl::l[LK:kk:

cosðalkþ arsÞ
" #

� 2expð�2�2Þð1� expð��2ÞÞ
X

LKl:l:[LK:k:k

cosðalkþ arsÞþ
X

LKl::l[LK:kk:

cosðalk� arsÞ
" #

ð50Þ
An upper bound on the variance is given by:

VAR½~JDG� � nðn� 1Þ½ð1� expð�4�2ÞÞ þ 2expð��2Þð1� expð�2�2ÞÞðn� 2Þ�
ð51Þ

For a small �, the bound may be tightened:

VAR½~JDG� � 4nðn� 1Þ2�2 ð52Þ

Note that in order to obtain Eq. (52), all the cosine terms had to be majored by 1.

Given a point on the screen with destructive interference (the sum and products of
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the cosines vanish), the upper bound in Eq. (52) is strongly superior with respect to

the actual variance. On the other hand, given a point with constructive interference,

the upper bound is a fair estimation of the real variance. Notice also that the upper

bound of the variance is proportional to the cube of the dimension and the variance

of the stochastic noise.

Finally, the transition to ~IDG is obtained:

VAR½~IDG� ¼
1

n4
sinc4 fb

2

� 	
� VAR½~JDG� ð53Þ
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problems with time-expensive evaluations using kriging, self-adaptation, and MPI. In: Multiple
Criteria Decision Making for Sustainable Energy and Transportation Systems: Proceedings of
MCDM 2008, The 19th International Conference on Multiple Criteria Decision Making. Volume 634
of Lecture Notes in Economics and Mathematical Systems. (Heidelberg, Germany, Springer Physica,

2010) pp. 301–312

51. F. Rosca-Pruna, M.J. Vrakking, Revival structures in picosecond laser-induced alignment of I2

molecules. J. Chem. Phys. 116(15), 6579–6588 (2002)

52. M. Preuss, Reporting on experiments in evolutionary computation. Technical Report CI-221/07,

University of Dortmund, SFB 531 (2007)

53. C. Igel, T. Glasmachers, V. Heidrich-Meisner, Shark. J. Mach. Learn. Res. 9, 993–996 (2008)

54. E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms—A comparative

case study. In: Conference on Parallel Problem Solving from Nature (PPSN V). Volume 1498 of
Lecture Notes in Computer Science (Amsterdam, Springer, 1998) pp. 292–301

55. E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V. Grunertda Fonseca, Performance assessment of

multiobjective optimizers: An analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

56. E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications. PhD

thesis, (ETH Zurich, Switzerland, 1999)

57. M. Laumanns, G. Rudolph, H.P. Schwefel, Approximating the pareto set: Concepts, diversity issues,

and performance assessment. Technical Report CI-72/99, (University of Dortmund, 1999)

58. M. Emmerich, N. Beume, B. Naujoks, An EMO algorithm using the hypervolume measure as

selection criterion. In: Proceedings of the Evolutionary Multi-Criterion Optimization: Third Int’l
Conference (EMO 2005). Volume 3410 of Lecture Notes in Computer Science (Berlin, Springer,

2005) pp. 62–76

59. N. Beume, B. Naujoks, M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated

hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

60. A. Ostermeier, A. Gawelczyk, N. Hansen, Step-size adaptation based on non-local use of selection

information. In: Parallel Problem Solving from Nature—PPSN III. Volume 866 of Lecture Notes in
Computer Science (Springer, 1994) pp. 189–198

61. R. Ros, N. Hansen, A simple modification in CMA-ES achieving linear time and space complexity.

In: Parallel Problem Solving from Nature—PPSN X. Volume 5199 of Lecture Notes in Computer
Science (Springer, New York, 2008) pp. 296–305

62. H. Li, Q. Zhang, Multiobjective optimization problems with complicated Pareto sets, MOEA/D and

NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

63. L. Rachmawati, D. Srinivasan, Multiobjective evolutionary algorithm with controllable focus on the

knees of the Pareto front. IEEE Trans. Evol. Comput. 13(4), 810–824 (2009)

64. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput.

1, 67–82 (1997)

65. D. Hadka, P. Reed, Diagnostic assessment of dearch controls and failure modes in many-objective

evolutionary optimization. Evol. Comput. (2011)

490 Genet Program Evolvable Mach (2012) 13:445–491

123



66. A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective evolutionary algo-

rithms: A survey of the state of the art. Swarm Evol. Comput. 1(1), 32–49 (2011)

67. E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: On the design of Pareto-

compliant indicators Via weighted integration. In: S. Obayashi et al., eds. Conference on Evolu-
tionary Multi-Criterion Optimization (EMO 2007). Volume 4403 of LNCS (Berlin, Springer, 2007)

pp. 862–876

68. O.M. Shir, M. Preuss, B. Naujoks, M. Emmerich, Enhancing decision space diversity in evolutionary

multiobjective algorithms. In: Proceedings of Evolutionary Multi-Criterion Optimization: Fifth
International Conference (EMO 2009). Volume 5467 of Lecture Notes in Computer Science
(Springer, 2009) pp. 95–109

69. T. Ulrich, J. Bader, L. Thiele, Defining and optimizing indicator-based diversity measures in mul-

tiobjective search. In: R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph, eds. PPSN-XI. Volume 6238 of
Lecture Notes in Computer Science (Springer, 2010) pp. 707–717

70. A. Zadorojniy, M. Masin, L. Greenberg, O.M. Shir, L. Zeidner, Algorithms for finding maximum

diversity of design variables in multi-objective optimization. Procedia Comput. Sci. 8, 171–176

(2012). Conference on Systems Engineering Research

Genet Program Evolvable Mach (2012) 13:445–491 491

123


	Quantum control experiments as a testbed for evolutionary multi-objective algorithms
	Abstract
	Introduction
	Uncertain environments (noise)
	EMOA in noisy environments: robustness
	Simulated robustness in multi-objective optimization
	Multi-objective experimental optimization
	Note on elitism versus robustness

	QC systems: sources of noise and uncertainty

	The algorithmic approach: multi-objective CMA-ES
	Introduction of noise
	A proposed scheme

	Systems under investigation
	Model landscapes
	The multi-sphere model
	The diffraction grating problem

	Simulated quantum control system: molecular alignment
	Experimental QC system I: molecular ion generation
	Experimental QC system II: molecular plasma generation

	Practical observations
	Preliminary: MO-CMA on the multi-sphere landscape
	Numerical results
	Discussion
	Reference algorithms
	Noisy tri-sphere simulations

	Diffraction grating: extensive performance comparison
	Numerical results
	Discussion

	Molecular alignment simulations
	Laboratory experiment I: molecular ion generation
	Laboratory experiment II: molecular plasma generation

	Summary
	Acknowledgments
	Appendix 1: The diffraction grating problem analytical expression of the 2-dimensional Pareto front
	Appendix 2: Diffraction grating noise propagation
	Diffraction grating mean
	Diffraction grating variance
	Explicit summation
	Conclusion

	References


