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Abstract
We present a new hardware-efficient paradigm for universal quantum compu-
tation which is based on encoding, protecting and manipulating quantum
information in a quantum harmonic oscillator. This proposal exploits multi-
photon driven dissipative processes to encode quantum information in logical
bases composed of Schrödinger cat states. More precisely, we consider two
schemes. In a first scheme, a two-photon driven dissipative process is used to
stabilize a logical qubit basis of two-component Schrödinger cat states. While
such a scheme ensures a protection of the logical qubit against the photon
dephasing errors, the prominent error channel of single-photon loss induces bit-
flip type errors that cannot be corrected. Therefore, we consider a second scheme
based on a four-photon driven dissipative process which leads to the choice of
four-component Schrödinger cat states as the logical qubit. Such a logical qubit
can be protected against single-photon loss by continuous photon number parity
measurements. Next, applying some specific Hamiltonians, we provide a set of
universal quantum gates on the encoded qubits of each of the two schemes. In
particular, we illustrate how these operations can be rendered fault-tolerant with
respect to various decoherence channels of participating quantum systems.
Finally, we also propose experimental schemes based on quantum super-
conducting circuits and inspired by methods used in Josephson parametric
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amplification, which should allow one to achieve these driven dissipative pro-
cesses along with the Hamiltonians ensuring the universal operations in an
efficient manner.

Keywords: quantum superconducting circuits, circuit quantum electrodynamics,
quantum error correction, quantum reservoir engineering, universal quantum
computation

1. Introduction

In a recent paper [1], we showed that a quantum harmonic oscillator could be used as a
powerful resource to encode and protect quantum information. In contrast to the usual approach
of multi-qubit quantum error correcting codes [2, 3], our approach takes advantage of the
infinite dimensional Hilbert space of a quantum harmonic oscillator by redundantly encoding
quantum information without the introduction of additional decay channels. Indeed, the far
dominant decay channel for a quantum harmonic oscillator, for instance, a microwave cavity
field mode, is photon loss. Hence, we only need one type of error syndrome to identify the
photon loss error. In this paper, we aim to extend the proposal of [1] as a hardware-efficient
protected quantum memory towards a hardware-efficient protected logical qubit with which we
can perform universal quantum computations [4].

Before getting to this extension, we recall the idea behind the proposal of [1]. We start by
mapping the qubit state +c c0 10 1 into a multi-component superposition of coherent states

of the harmonic oscillator ψ = + = +α α α
+ +c c c c0 1( )

L L i
0

0 1 0 1  , where

α α α α= ± − = ± −α α
± ±( ) ( )i i, .i   

Here, ≈( )/1 2 is a normalization factor, and α denotes a coherent state of complex amplitude α.

By taking α large enough, α , α− , αi and α−i are quasi-orthogonal (note that for α = 2

considered in most simulations of this paper, α α < −i 10
2

3). Such an encoding protects the

quantum information against photon loss events. In order to see this, let us also define

ψ = +α α α
− −c ic( )

i
1

0 1  , ψ = −α α α
+ +c c( )

i
2

0 1  and ψ = −α α α
− −c ic( )

i
3

0 1  . The

state ψα
( )n evolves after a photon loss event to ψ ψ ψ=α α α

+⎡⎣ ⎤⎦a a( ) ( ) ( )n n n 1 mod 4 , where

a is the harmonic oscillatorʼs annihilation operator. Furthermore, in the absence of jumps during a time

interval t, ψα
( )n deterministically evolves to ψα κ−

( )
e

n
/t 2 , where κ is the decay rate of the harmonic

oscillator. Now, the parity operator Π π= †( )i a aexp can act as a photon jump indicator. Indeed, we

have ψ Π ψ = −α α ( )1( ) ( )n n n
and therefore the measurement of the photon number parity can

indicate the occurrence of a photon loss event. While the parity measurements keep track of the

photon loss events, the deterministic relaxation of the energy, replacing α by α κ−e /t 2, remains
inevitable. To overcome this relaxation of energy, we need to intervene before the coherent states start
to overlap in a significant manner to re-pump energy into the codeword.
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In [1], applying some tools that were introduced in [5], we illustrated that simply coupling
a cavity mode to a single superconducting qubit in the strong dispersive regime [6] provides the
required controllability over the cavity mode (modeled as a quantum harmonic oscillator) to
perform all the tasks of quantum information encoding, protection and energy re-pumping. The
proposed tools exploit the fact that in such a coupling regime, both qubit and cavity frequencies
split into well-resolved spectral lines indexed by the number of excitations in the qubit and the
cavity. Such a splitting in the frequencies gives the possibility of performing operations
controlling the joint qubit-cavity state. For instance, the energy re-pumping into the Schrödinger
cat state is performed by decoding back the quantum information onto the physical qubit and re-
encoding it on the cavity mode by re-adjusting the number of photons. However, such an
invasive control of the state exposes the quantum information to decay channels (such as the T1

and the T2 decay processes of the physical qubit) and limits the performance of the protection
scheme. Furthermore, if one wanted to use this quantum memory as a protected logical qubit,
the application of quantum gates on the encoded information would require the decoding of this
information onto the physical qubits, performing the operation, and re-encoding it back to the
cavity mode. Once again, by exposing the quantum information to un-protected qubit decay
channels, we limit the fidelity of these gates.

In this paper, we aim to exploit an engineered coupling of the storage cavity mode to its
environment in order to maintain the energy of the encoded Schrödinger cat state. It is well-
known that resonantly driving a damped quantum harmonic oscillator stabilizes a coherent state
of the cavity mode field. In particular, the complex amplitude α of this coherent state depends
linearly on the complex amplitude of the driving field. In contrast, by coupling a quantum
harmonic oscillator to a bath where any energy exchange with the bath happens in pairs of
photons, one can drive the quantum harmonic oscillator to the two aforementioned two-
component Schrödinger cat states α

+ and α
− [7–11]. In section 2 and appendix A, we will

exploit such a two-photon driven dissipative process and extend the results of [7–10] by
analytically determining the asymptotic behavior of the system for any initial state. In particular,
we will illustrate how such a two-photon process allows us to treat the Schrödinger cat states

α
+ and α

− (or equivalently the coherent states α± ) as logical 0 and 1 of a qubit which is

protected against a photon dephasing error channel. Such a logical qubit, however, is not
protected against the dominant single-photon loss channel. Therefore, in the same section, we
propose an extension of this two-photon process to a four-photon process for which the

Schrödinger cat states = +α α α
+ +( )( )

i
0mod4    and = −α α α

+ +( )( )
i

2mod4    (or

equivalently the states α
+ and α

+
i ) become a natural choice of logical 0 and 1 . Thus, we

end up with a logical qubit which is protected against photon dephasing errors and for which we
can also track and correct errors due to the dominant single-photon loss channel by continuous
photon number parity measurements [1]. While this work utilizes a combination of a driven-
dissipative process and continuous measurements to engineer and protect a qubit, another recent
superconducting circuit proposal [12] utilizes a Hamiltonian-based qubit [13] and protected set
of gates. It is interesting to note that both proposals protect their respective qubits from
dephasing by engineering the qubit basis states.

In section 3, we present a toolbox to perform universal quantum computation with such
protected Schrödinger cat states [14]. Applying specific Hamiltonians that should be easily engineered
using methods similar to those in Josephson parametric amplification, and in the presence of the two-
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photon or four-photon driven dissipative processes, we can very efficiently perform operations such as
arbitrary rotations around the Bloch sphereʼs x-axis and a two-qubit entangling gate. These schemes
can be well understood through quantum Zeno dynamics [15–17] where the strong two-photon or
four-photon processes continuously project the evolution onto the degenerate subspace of the logical
qubit (also known as a decoherence-free subspace [18]). More precisely, the two-photon (resp. four-
photon) process could be considered as a strong measurement of the quantum harmonic oscillator,

projecting the system on the space spanned by α
±{ } (resp. =α{ }k 0, 1, 2, 3k mod 4 ). The idea

of the quantum Zeno dynamics is then to add a Hamiltonian evolution with a time-scale much slower
than the projection rate through the measurement. This will lead to a quasi-unitary evolution within the
subspace fixed by the measurement. Furthermore, by increasing the separation of the time-scales
between the Hamiltonian evolution and the measurement projection rate, this evolution approaches a
real unitary. In order to achieve a full set of universal gates, we then only need to perform a
π /2-rotation around the Bloch sphereʼs y- or z-axis. This is performed by the Kerr effect, induced
when we couple the cavity mode to a nonlinear medium such as a Josephson junction (JJ) [19, 20].
We will illustrate that these gates remain protected against the decay channels of all involved quantum
systems and could therefore be employed in a fault-tolerant quantum computation protocol.

Finally, in section 4, we propose a readily realizable experimental scheme to achieve the
two-photon driven dissipative process along with Hamiltonians needed for universal logical
gates. Indeed, we will illustrate that a simple experimental design based on circuit quantum
electrodynamics gives us enough flexibility to engineer all the Hamiltonians and the damping
operator that are required for the protocols related to the two-photon process. Focusing on a
fixed experimental setup, we will only need to apply different pumping drives of well-chosen
but fixed amplitudes and frequencies to achieve these requirements. Moreover, comparing to the
experimental scheme proposed in [11] (based on the proposal by [21]) our scheme does not
require any symmetries in hardware design: in particular, the frequencies of the modes involved
in the hardware could be very different, which helps to achieve an important separation of decay
times for the two modes. As supporting indications, similar devices with parameters close to
those required in this paper have been recently realized and characterized experimentally
[20, 22]. An extension of this experimental scheme to the case of the four-photon driven
dissipative process is currently under investigation and we will describe the starting ideas.

2. Driven dissipative multi-photon processes and protected logical qubits

2.1. Two-photon driven dissipative process

Let us consider the harmonic oscillator to be initialized in the vacuum state and let us drive it by
an external field in such a way that it can only absorb photons in pairs. Assuming furthermore
that the energy decay also only happens in pairs of photons, one easily observes that the photon
number parity is conserved. More precisely, we consider the master equation corresponding to a
two-photon driven dissipative quantum harmonic oscillator (with ρ̇ being the time derivative of
ρ)

ρ ϵ ϵ ρ κ ρ˙ = − +*†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦a a a, , (1)2ph
2

2ph
2

2ph
2
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where

ρ ρ ρ ρ= − −† † †[ ]A A A A A A A
1
2

1
2

.
When ρ =( )0 0 0 , one can show that the density matrix ρ converges towards a pure even

Schrödinger cat state given by the wavefunction α α= + −α
+ ( )  , where

α ϵ κ= /2 2ph 2ph and  is a normalizing factor. Similarly, if the system is initiated in a state

with an odd photon number parity such as the Fock state 1 1 , it converges towards the pure

odd Schrödinger cat state α α= − −α
− ( )  . Indeed, the set of steady states of equation

(1) is given by the set of density operators defined on the two-dimensional Hilbert space

spanned by α α−{ }, [10]. For any initial state, the system exponentially converges to this

set in infinite time, making the span of α α−{ }, the asymptotically stable manifold of the

system. However, the asymptotic states in this manifold are not always pure states. One of the
results of this paper is to characterize the asymptotic behavior of the above dynamics for any
initial state (see appendix A). In particular, initializing the system in a coherent state
ρ β β=(0) , it converges to the steady state

ρ = + + + *
α α α α α α α α∞ ++
+ +

−−
− −

+−
+ −

+−
− +c c c c , (2)       

with

∫αβ

α
ϕ α β

= + = −

= −
*

β β

β

ϕ

π
ϕ ϕ

++
−

−−
−

+−

−

=

−

( ) ( )

( )
( )

c e c e

c
i e

d e I e

1
2

1 ,
1
2

1 ,

2 sinh 2
,i i

2 2

2 0
0

2 2 2

2 2

2

where ( )I .0 is the modified Bessel function of the first kind. For large enough β , the

populations of the even and odd cat states α
± , ++c and −−c respectively, equilibrate to one-half.

At large enough α (see figure 1, top row), if one initializes with a coherent state away from the
vertical axis in phase space, then the system will converge towards one of the two steady
coherent states α± (with the sign depending on whether one initialized to the right or the left

of the vertical axis). This suggests that if we choose the states α
+ and α

− as the logical qubit

states (see figure 2(a)), the two Bloch vectors α+ ≈X and α− ≈ −X are robustly
conserved. Therefore, we will deal with a qubit where the phase-flip errors are very efficiently
suppressed and the dominant error channel is the bit-flip errors (which could be induced by a
single-photon decay process). This could be better understood if we consider the presence of a
dephasing error channel for the quantum harmonic oscillator. In the presence ofdephasing with
rate κϕ, but no single-photon decay (we will discuss this later), the master equation of the driven

system is given as follows

ρ ϵ ϵ ρ κ ρ κ ρ˙ = − + +*
ϕ

† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦a a a a a, . (3)2ph
2

2ph
2

2ph
2 
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Such a dephasing, similar to the photon drive and dissipation, does not affect the photon
number parity. Therefore the populations of the cat states α

+ and α
− , or equivalently the +Z

and −Z states in the logical basis, remain constant in the presence of such dephasing. This
means that such an error channel does not induce any bit flip errors on the logical qubit. It can
however induce phase flip errors. But as shown in appendix A, the rate at which such logical
phase flip errors happen is exponentially suppressed by the size of the cat. Indeed, for κ κ≪ϕ 2ph,

the induced logical phase flip rate is given by

| |γ κ α
α

α≈ → → ∞ϕ− ( )sinh 2
0 as .

phase flip

2

2

The two-photon driven dissipative process therefore leads to a logical qubit basis which is very
efficiently protected against the harmonic oscillatorʼs dephasing channel. It is, however, well
known that the major decay channel in usual practical quantum harmonic oscillators is single-
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Figure 1. Asymptotic (infinite-time) behavior of the two-photon driven dissipative
process given by equation (1) where the density matrix is initialized in a coherent state.
Here a point β in the phase space corresponds to the coherent state β at which the
process is initialized. The upper row illustrates the value of the Bloch sphere x-

coordinate in the logical basis α α
+ −{ },  α ρ α α ρ α≈ − − −( )s s

where

α ϵ κ= ¯ =n 2 2ph 2ph for ¯ =n 2, 4, 9 and 25. We observe that for most coherent states

except for a narrow vertical region in the center of the phase space, the system
converges to one of the steady coherent states α± . The lower row illustrates the purity

of the steady state to which we converge ρ∞( ){ }tr 2 for various initial coherent states.

Besides the asymptotic state being the pure α± away from the vertical axis, one can
observe that the asymptotic state is also pure for initial states near the center of phase
space. Indeed, starting in the vacuum state, the two-photon process drives the system to
the pure Schrödinger cat state α

+ .



photon loss [23]. While the two-photon process fixes the manifold spanned by the states α
± as

the steady state manifold, the single-photon jumps, that can be modeled by application at a
random time of the annihilation operator a, lead to a bit-flip error channel on this logical qubit
basis. Indeed, the application of a on α

± sends that state to α
∓ . Such jumps are not

suppressed by the two-photon process and a single-photon decay rate of κ1ph leads to a logical

qubit bit-flip rate of α κ2
1ph. It is precisely for this reason that we need to get back to the protocol

of [1] recalled in section 1.

2.2. Four-photon driven dissipative process

In order to be able to track single-photon jump events, we need to replace the logical qubit

states α
± by the Schrödinger cat states α

( )0mod4 and α
( )2mod4 . To this aim, we present here

an extension of the above two-photon process to a four-photon one. Indeed, coupling a quantum
harmonic oscillator to a driven bath in such a way that any exchange of energy with the bath
happens through quadruples of photons obtains the following master equation:
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Figure 2. (a) The two-photon driven dissipative process leads to the choice of even and
odd Schrödinger cat states α

+ and α
− as the logical 0 and 1 of a qubit not

protected against the single-photon loss channel. In this encoding, the +X and −X

Bloch vectors approximately correspond to the coherent states α and α− (the
approximate correspondence is due to the non-orthogonality of the two coherent states
which is suppressed exponentially by α4 2. While the coherent states are quasi-
orthogonal, the cat states are orthogonal for all values of α. Since the overlap between
coherent states decreases exponentially with α 2, the two sets of states can be considered
as approximately mutually unbiased bases for an effective qubit for α ≳ 2). (b) The
four-photon driven dissipative process leads to the choice of four-component

Schrödinger cat states α
( )0mod4 and α

( )2mod4 as the logical 0 and 1 of a qubit

which can be protected against single-photon loss channel by continuous photon

number parity measurements. Here = +α α α
+ +( )( )

i
0mod4    corresponds to a 4-

cat state which in the Fock basis is only composed of photon number states that are

multiples of four. Similarly = −α α α
+ +( )( )

i
2mod4    corresponds to a 4-cat state

which in the Fock basis is composed of states whose photon numbers are the even
integers not multiples of 4. In this encoding, +X and −X Bloch vectors approximately

correspond to the two-component Schrödinger cat states α
+ and α

− .



ρ ϵ ϵ ρ κ ρ˙ = − +*†⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦a a a, . (4)4ph
4

4ph
4

4ph
4

The steady states of these dynamics are given by the set of density operators defined on the

four-dimensional Hilbert space spanned by α α± ±{ }i, , where α ϵ κ= ( )/2
/

4ph 4ph

1 4
. In

particular, noting that the above master equation conserves the number of photons modulo 4,
starting at initial Fock states 0 , 1 , 2 and 3 , the system converges, respectively, to the pure
states

= + = −

= − = +
α α α α α α

α α α α α α

+ + − −

+ + − −

( )
( )

( )
( )

i

i

, ,

, .

( ) ( )

( ) ( )

i i

i i

0mod4 1mod4

2mod4 3mod4

       
       

By keeping track of the photon number parity, we can restrict the dynamics to the even parity
states, so that the steady states are given by the set of density operators defined on the Hilbert

space spanned by α α{ },( ) ( )0 mod 4 2mod4  . Similar to the two-photon process, these two states

will be considered as the logical, now also protected, 0 and 1 of a qubit (see figure 2(b)).
Once again, a photon dephasing channel of rate κϕ leads to a phase-flip error channel for the

logical qubit where the error rate is exponentially suppressed by the size of the Schrödinger cat
state (see numerical simulations in appendix A).

Note that probing the photon number parity of a quantum harmonic oscillator in a quantum
non-demolition manner can be performed by a Ramsey-type experiment where the cavity mode
is dispersively coupled to a single qubit playing the role of the meter [24]. Such an efficient
continuous monitoring of the photon number parity has recently been achieved using a
transmon qubit coupled to a 3D cavity mode in the strong dispersive regime [25]. Furthermore,
we have determined that this photon number parity measurement can be performed in a fault-
tolerant manner; the encoded state can remain intact in the presence of various decay channels
of the meter. The details of such a fault-tolerant parity measurement method will be addressed
in a future publication [26].

3. Universal gates and fault-tolerance

The proposal of the previous section together with the implementation scheme of the next one
should lead to a technically realizable protected quantum memory. Having discussed how one
can dynamically protect from both bit-flip and phase-flip errors, we show in this section that
such a protection scheme can be further explored towards a new paradigm for performing fault-
tolerant quantum computation. Having this in mind, we will show how a set of universal
quantum gates can be efficiently implemented on such dynamically protected qubits. This set
consists of arbitrary rotations around the x-axis of a single qubit, a single-qubit π /2 rotation
around the z-axis, and a two-qubit entangling gate.

The arbitrary rotations around x-axis of a single qubit and the two-qubit entangling gate
can be generated by applying some fixed-amplitude driving fields at well-chosen frequencies,
leading to additional terms in the effective Hamiltonian of the pumped regime. In order to
complete this set of gates, one then only needs a single-qubit π /2-rotation around either the y-
or z-axes. Here we perform such a rotation around the z-axis by turning off the multi-photon
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drives and applying a Kerr effect in the Hamiltonian. Such a Kerr effect is naturally induced in
the resonator mode through its coupling to the JJ, providing the nonlinearity needed for the
multi-photon process. Finally, we will also discuss the fault-tolerance properties of these gates.

3.1. Quantum Zeno dynamics for arbitrary rotations of a single qubit

Let us start with the case of the two-photon process where the quantum information is not
protected against single-photon loss. The parity eigenstates α

+ and α
− are invariant states

when the exchange of photons with the environment only happens through pairs of photons.
Here, we are interested in performing a rotation of an arbitrary angle θ around the x-axis in this

logical basis of α α
+ −{ },  :

θ θ= + + +θ α α α α α α α α
+ + − − + − − +( ) ( )X icos sin .       

In other to ensure such a population transfer between the even and odd parity manifolds, one
can apply a Hamiltonian ensuring single-photon exchanges with the system. We show that the
simplest Hamiltonian that ensures such a transfer of population is a driving field at resonance
with the quantum harmonic oscillator. The idea consists of driving the quantum harmonic
oscillator at resonance where the phase of the drive is chosen to be out of quadrature with
respect to the Wigner fringes of the Schrödinger cat state. Furthermore, the amplitude of the
drive is chosen to be much smaller than the two-photon dissipation rate. This can be much
better understood when reasoning in a time-discretized manner. Let us assume α to be real and
the quantum harmonic oscillator to be initialized in the even parity cat state α

+ . Applying a

displacement operator ϵ ϵ= + †( )( )( )D i i a aexp with ϵ ≪ 1 brings the state towards

ϵ α ϵ α ϵ= − + + +α
ϵα ϵα+ −( )( )D i e i e i .i i 

Following the analysis of the previous section, the two-photon process re-projects this displaced

state to the space spanned by α α
+ −{ },  without significantly reducing the coherence term;

the states α ϵ− + i and α ϵ+ i are close to the coherent states α− and α . Therefore, the

displaced state is approximately projected on the state ϵα ϵα+α α
+ −( ) ( )icos sin  . This is

equivalent to applying an arbitrary rotation gate of the form ϵαX on the initial cat state α
+ . This

protocol can also be understood through quantum Zeno dynamics. The two-photon process can
be thought of as a measurement which projects onto the steady-state space spanned by

α α
+ −{ },  . Continuous performance of such a measurement freezes the dynamics in this

space while the weaksingle-photon driving field ensures arbitrary rotations around the x-axis of
the logical qubit defined in this basis.

In order to simulate such quantum Zeno dynamics, we consider the effective master
equation

ρ ϵ ρ ϵ ρ κ ρ˙ = − + + − +† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦i a a a a a, , . (5)X 2ph
2 2

2ph
2

Letting ϵ κ= ¯ /n 22ph 2ph and α = n̄ , the above Zeno dynamics will occur in the space spanned

by α α
− +{ },  when ϵ κ≪X 2ph. By initializing the system in the state α

+ and letting the

system evolve following the above dynamics, we numerically simulate the equivalent of a Rabi
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oscillation. We monitor the population of the states α
+ and α

− (the +Z and −Z states)

during the evolution. Figure 3(a) illustrates the result of such simulation over a time of π Ω/2 X

where the effective Rabi frequency is given by

Ω ϵ= n̄2 .X X

This effective Rabi frequency can be found by projecting the added driving Hamiltonian

ϵ + †( )a aX on the space spanned by α α
− +{ },  :

ϵ Π Π Π Π α α ϵ Ω σ+ + + = + + =*
α α α α

† + − − +
α α α α
+ − + −( ) ( ) ( )( ) ( )a a ,X X X x

L      

where Π = α α
± ±

α
±   . One can note in figure 3(a) (where we have chosen ϵ κ= /20X 2ph ), the

slight decay of the Rabi oscillations as a function of time. This is due to the finite ratio κ ϵ/ X2ph ,

which adds higher order terms to the above effective dynamics. Indeed, similar computations to
the one in appendix A can be performed to calculate the effective dephasing time due to these
higher order terms. In practice, this induced decay can be reduced by choosing larger separation
of time-scales (smaller ϵ κX 2ph) at the expense of longer gate times. However, even a moderate

factor of 20 ensures gate fidelities in excess of 99.5%.
As illustrated in figure 3(b), we can calculate the Wigner function at particular times

during the evolution. This is performed for the times t = 0, π Ω= /t 8 X , π Ω= /t 4 X and
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Figure 3. Quantum Zeno dynamics as a tool for performing rotations of an arbitrary

angle around the x-axis of the logical qubit space spanned by α α
+ −{ },  . The

quantum harmonic oscillator is driven at resonance in the Q-direction while the two-
photon driven dissipative process is acting on the system. (a) Simulations of equation
(5) illustrate the Rabi oscillations around the Bloch sphereʼs x-axis in the logical qubit
space at an effective Rabi frequency of Ω ϵ= n̄2X X . Here ϵ κ= 20X 2ph and ¯ =n 4. (b)

Wigner representation of the state at times t = 0, π Ω= /t 8 X , π Ω= /t 4 X , and
π Ω= /t 2 X . We can observe the shifts in the Wigner fringes while the state remains a

coherent superposition with equal weights of α− and α . (c) The tomography at these

times t = 0, π Ω= /t 8 X , π Ω= /t 4 X , and π Ω= /t 2 X illustrates rotations of angles 0, π /4,
π /2 and π around the logical x-axis.



π Ω= /t 2 X and, as illustrated in figure 3(c), we observe rotations of angle 0, π /4, π /2 and π
around the logical x-axis for the qubit states α

+ and α
− .

Let us now extend this idea to the case of the four-photon process where quantum
information can be protected through continuous parity measurements. For the two-photon
process, a population transfer from the even cat state α

+ to α
− is ensured through a resonant

drive which provides single-photon exchanges with the system. For the four-photon case, such
a rotation of an arbitrary angle around the Bloch sphereʼs x-axis necessitates a population

transfer between the two states α
0mod4 and α

2mod4 . The state α
0mod4 corresponds to a four-

component Schrödinger cat state, which in the Fock basis is only composed of states with

photon numbers that are multiples of 4. Similarly, the state α
2mod4 corresponds to a four-

component Schrödinger cat state which in the Fock basis is only composed of photon number
states that are even but not multiples of 4. Therefore, in order to ensure a population transfer

from α
( )0mod4 to α

( )2mod4 , we need to apply a Hamiltonian that adds/subtracts pairs of

photons to/from the system. This can be done by adding a squeezing Hamiltonian of the form

ϵ +ϕ ϕ− †( )e a e aX
i i2 2 to the Hamiltonian of the four-photon process (for a real α, we take ϕ = 0

in order to be in correct quadrature with respect to the Wigner fringes):

ρ ϵ ρ ϵ ρ κ ρ˙ = − + + − +† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦i a a a a a, , . (6)X
2 2

4ph
4 4

4ph
4

In direct correspondence with the two-photon process, we initialize the system in the state

α
( )0mod4 and we simulate equation (6). Here ϵ κ= ¯ /n 24ph

2
4ph ensures that the subspace spanned

by α α α α− −{ }i i, , , , with α = n̄ , is asymptotically stable. Since all the Hamiltonians

and decay terms correspond to exchanges of photons in pairs or quadruples and since we have

initialized in α
0mod4 , we can restrict the dynamics to the subspace spanned by even Fock

states. In this subspace, the asymptotic manifold is generated by α
( )0mod4 and α

( )2mod4 . We

also take ϵX to be much smaller than κ4ph. Simulations shown in figure 4(a) (for ¯ =n 4 and

ϵ κ= 20X 4ph ) illustrate the Rabi oscillations at frequency

Ω ϵ= n̄2X X

around the Bloch sphereʼs x-axis in this logical basis. This Rabi frequency can also be retrieved
by projecting the squeezing Hamiltonian onto the subspace stabilized by the driven dissipative
process:

∑ϵ Π Π α α ϵ+ = + *
α α

†

=

+
α α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )a a .( ) ( )

( ) ( )X X
j

j j2 2 2 2

0,1,2,3

mod 4 2mod4
0,1,2,3 mod 4 0,1,2,3 mod 4   

When restricted to the even (or odd) photon number subspace, this precisely gives the effective
Hamiltonian Ω σX x

L. As shown in figures 4(b), (c), we efficiently achieve an effective single-
qubit gate corresponding to rotations of an arbitrary angle around the Bloch sphereʼs x-axis for

the logical qubit spanned by α α{ },( ) ( )0mod4 2mod4  .
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3.2. Quantum Zeno dynamics for a two-qubit entangling gate

Here we show that the same kind of idea can be applied to the case of two logical qubits to
produce an effective entangling Hamiltonian of the form σ σ⊗x

L
x
L. We start with the case of two

harmonic oscillators (with corresponding field mode operators a1 and a2), each one undergoing
a two-photon process. Let us assume we can effectively couple these two oscillators to achieve

a beam-splitter Hamiltonian of the form ϵ +† †( )a a a aXX 1 2 2 1 , where ϵ κ κ≪ ,XX 1,2ph 2,2ph (we will

present in the next section an architecture allowing to get such an effective beam-splitter
Hamiltonian between two modes). In order to illustrate the performance of the method, we
simulate the two-mode master equation:

ρ ϵ ρ ϵ ρ ϵ ρ

κ ρ κ ρ

˙ = − + + − + −

+ +

† † † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

i a a a a a a a a

a a

, , ,

. (7)

XX 1 2 2 1 1,2ph 1
2

1
2

2,2ph 2
2

2
2

1,2ph 1
2

2,2ph 2
2 

Simulations in figure 5(a) are performed by initializing the system at the logical state
+ + = ⊗α α

+ +,Z Z   and letting it evolve under equation (7). These simulations illustrate

that two-mode entanglement does occur, reaching the Bell states

= ⊗ ± ⊗α α α α α
± + + − −( )/i 22,     . Indeed, by projecting the beam-splitter

Hamiltonian ϵ +† †( )a a a aXX 1 2 2 1 on the tensor product of the spaces spanned by α α
+ −{ },  ,

we obtain the effective Hamiltonian of a two-qubit entangling gate:
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Figure 4. Quantum Zeno dynamics as a tool for performing rotations of arbitrary angles

around the Bloch sphereʼs x-axis of the logical qubit basis of α α{ },( ) ( )0mod4 2mod4  . A

squeezing Hamiltonian is applied on the quantum harmonic oscillator while the four-
photon driven dissipative process is acting. (a) Rabi oscillations around the x-axis with
an effective Rabi frequency of Ω ϵ= n̄2X X . Here ϵ κ= /20X 2ph and ¯ =n 4. (b) Wigner

representation of the state at times t = 0, π Ω= /t 8 Z , π Ω= /t 4 Z and π Ω= /t 2 Z , with
different fringe patterns associated to rotations with different angles. (c) The
tomography at these times t = 0, π Ω= /t 8 Z , π Ω= /t 4 Z and π Ω= /t 2 Z illustrate
rotations of angles 0, π /4, π /2 and π around the logical x-axis.



ϵ Π Π Π Π

α ϵ Ω σ σ

⊗ + ⊗

= + ⊗ + = ⊗α α α α α α α α

† †

+ − − + + − − +

α α α α α α α α
+ − + − + − + −

( ) ( )
( )a a a a

2 ,

XX

XX XX x
L

x
L

, , 1 2 2 1 , ,

2 1, 2,       
       

where

Ω ϵ= n̄2 .XX XX

Once again, the decay of the fidelity to the Bell states is due to higher order terms in the above
approximation of the beam-splitter Hamiltonian by its projection on the qubitʼs subspace. This
decay can be reduced by taking a larger separation of time-scales between ϵXX and κ κ,1,2ph 2,2ph.

However, as can be seen in the simulations, even with a moderate ratio 1 20 of ϵ κXX 1,2ph and

ϵ κ/XX 2,2ph, we get a Bell state with fidelity in excess of 99%.

For the case of the four-photon process, in order to achieve an effective Hamiltonian of the

form σ σ⊗x
L

x
L for the logical qubit basis of α α{ },( ) ( )0mod4 2mod4  , one needs to ensure

exchanges of photons in pairs between the two oscillators encoding the information. This is

satisfied by replacing the beam-splitter Hamiltonian with ϵ +† †( )a a a aXX 1
2

2
2

2
2

1
2 . Once again, we

initialize the system in the state + + = ⊗α α, ( ) ( )
Z Z

0mod4 0mod4  and let it evolve following
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Figure 5. Quantum Zeno dynamics as a tool for performing a two-qubit entangling gate

for the two cases of the two-photon process, with the logical qubit basis α α
+ −{ },  ,

and the four-photon process, with the logical qubit basis α α{ },( ) ( )0mod4 2mod4  . (a)

Considering the two-photon process and initializing the effective two-qubit system in
the state + + = ⊗α α

+ +,Z Z   , we monitor continuously the fidelity with respect to

the Bell states = ⊗ ± ⊗α α α α α
± + + − −( )i2,

1

2
     . The simulation para-

meters are the same as in previous figures (in particular ¯ =n 4) and the effective
entangling Hamiltonian is given by Ω σ σ⊗XX x

L
x

L1, 2, with Ω ϵ= n̄2XX XX (ϵ κ= /20XX 2ph ).
(b) Similar simulation for the four-photon process, where the effective two-qubit system

is initialized in the state + + = ⊗α α, ( ) ( )
Z Z

0mod4 0mod4  and we monitor

continuously the fidelity with respect to the Bell states

= ⊗ ± ⊗α α α α α
± ( )i( ) ( ) ( ) ( )
4,

1

2

0mod4 0mod4 2mod4 2mod4     .



the two-mode master equation:

ρ ϵ ρ ϵ ρ ϵ ρ

κ ρ κ ρ

˙ = − + + − + −

+ +

† † † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

i a a a a a a a a

a a

, , ,

. (8)

XX 1
2

2
2

2
2

1
2

1,4ph 1
4

1
4

2,4ph 2
4

2
4

1,4ph 1
4

2,4ph 2
4 

Simulations of figure 5(b) illustrate two-mode entanglement, reaching the Bell states

= ⊗ ± ⊗α α α α α
± ( )/i 2( ) ( ) ( ) ( )
4,

0mod4 0mod4 2mod4 2mod4     . By projecting the

Hamiltonian ϵ +† †( )a a a aXX 1
2

2
2

2
2

1
2 on the tensor product of the spaces spanned by

α{ }( )0,1,2,3mod4 (spaces that are stabilized by the four-photon driven dissipative process),

we get the effective Hamiltonian:

∑

ϵ Π Π Π Π

α ϵ

⊗ + ⊗

= α α

† †

=

+

⊗

α α α α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )a a a a

2 .( ) ( )

( ) ( ) ( ) ( )XX

XX
j

j j

1
2

2
2

2
2

1
2

4

0,1,2,3

mod 4 2mod4

2

0,1,2,3 mod 4 0,1,2,3 mod 4 0,1,2,3 mod 4 0,1,2,3 mod 4

 

   

When restricted to the even (or odd) photon number subspace, this gives the two-qubit
entangling Hamiltonian Ω σ σ Ω ϵ⊗ = n̄, where 2 .XX x

L
x

L
XX XX

1, 2, 2

3.3. Kerr effect for π=2-rotation around z-axis

In order to achieve a complete set of universal gates, we only need another single-qubit gate
consisting of a π /2-rotation around the y or z-axis. Together with arbitrary rotations around the
x-axis, such a single-qubit gate enables us to perform any unitary operations on single qubits
and, along with the two-qubit entangling gate of the previous subsection, provides a complete
set of universal gates. However, this fixed angle single-qubit gate presents an issue not
manifested in the other gates. To see this, consider the case of the two-photon process with the

logical qubit basis α α
+ −{ },  . The process renders the two qubit states α± ≈ ±X highly

stable and tends to prevent any transfer of population from the vicinity of one of these states to
the other one. This is trivially in contradiction with the aim of the π /2-rotation around the y or z-
axis. This simple fact suggests that performing such a gate is not possible in presence of the
two-photon process. Here, we propose an alternative approach, consisting of turning off the
two-photon process during the operation (possible through the scheme proposed in the next

section) and applying a self-Kerr Hamiltonian of the form χ− †( )a a
Kerr

2
. In the next section, we

will see how such a Kerr Hamiltonian is naturally produced through the same setting as the one
required for the two-photon process.

It was proposed in [19] and experimentally realized in [20] that a Kerr interaction can be
used to generate Schrödinger cat states. More precisely, initializing the oscillator in the coherent
state β , at any time π χ= /t qq Kerr

where q is a positive integer, the state of the oscillator can be

written as a superposition of q coherent states [23]:

New J. Phys. 16 (2014) 045014 M Mirrahimi et al

14



∑ ∑ψ π
χ

β= =
π π

=

−

=

−
−

⎛
⎝⎜

⎞
⎠⎟t

q q
e e

1
2

.( )
q

p

q

k

q
ik k p q ip q

Kerr 0

2 1

0

2 1

In particular, at π χ= /t 22 Kerr
, the states α± evolve to α α± − ∓( )/ i1 2 . Therefore, in the

case of the logical qubit basis α α
+ −{ },  , this is equivalent to a π−( )/2 -rotation around the

z-axis.
Analogously for the case of the four-photon process, initializing the oscillator in the two-

component Schrödinger cat state + ≈ α
+

X  obtains the state −α α
+ +( )/ i1 2 i  at time

π χ= /t 88 Kerr
. Thus, we have a π−( )/2 -rotation around the z-axis for the logical qubit basis of

α α{ },( ) ( )0mod4 2mod4  .

3.4. Fault-tolerance

The proposed set of Hamiltonians allows one to obtain a set of universal quantum gates for the
respective two-photon and four-photon processes (see table 1). In this subsection, we consider
a logical qubit encoded by the four-photon driven dissipative process and protected against
single-photon decay through continuous photon-number parity measurements. We will discuss
the fault-tolerance of the above single and two qubit gates with respect to the decoherence
channels of single-photon decay and photon dephasing. Indeed, we will not discuss here the
tolerance with respect to imprecisions of the gates themselves as we believe such errors should
not be put on the same footing as the errors induced by the decoherence of the involved
quantum systems. While the protection against errors due to the coupling to an uncontrolled
environment is crucial to ensure a scaling towards many-qubit quantum computation, the degree
of perfection of gate parameters, such as the angle of a rotation for instance, can be regarded as
a technical and engineering matter.

More precisely, we will prove the first order fault-tolerance of all these quantum
operations. Here, by first order fault-tolerance, we mean that we prevent the errors due to single-
photon loss or photon dephasing to propagate through various quantum operations (see e.g.
definition 4 of [27]). Therefore such an error does not get amplified to produce more errors than
can be corrected by the quantum error correction scheme. As we do not address issues such as
combining the operations through a concatenation procedure, we do not deal here with a
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Table 1. List of Hamiltonians and decay operators providing protection and a set of
universal gates

Two-photon protection Four-photon protection

Decay operator κ a2ph
2 κ a4ph

4

Driving Hamiltonian ϵ −†( )i a a2ph
2 2 ϵ −†( )i a a4ph

4 4

Arbitrary rotations around X ϵ +†( )a aX ϵ +†( )a aX
2 2

π /2-rotation around z χ− †( )a a
Kerr

2
χ− †( )a a

Kerr

2

Two-qubit entangling gate ϵ +† †( )a a a aXX 1 2 2 1 ϵ +† †( )a a a aXX 1
2

2
2

2
2

1
2



threshold theorem. In other words, we show that the error rate due to the photon loss channel
does not increase while performing the quantum operations of the previous subsections and that
the continuous parity measurements during the operations enable the protection against such a
decay channel. Furthermore, arbitrary rotations of a qubit around the x-axis as well as the two-
qubit entangling gate are performed in presence of the four-photon process, thereby protecting
the qubit against photon dephasing. For the single-qubit π /2-rotation around the z-axis, as long
as the Kerr Hamiltonian strength χ

Kerr
is much more prominent than the dephasing rate (which is

the case in most current circuit QED schemes), turning on the four-photon process after the
operation will suppress for the phase error accumulated during the operation. Indeed, during the
operation, the cavity state is exposed to pure dephasing (rate κϕ) and energy damping (rate κ1ph).

This gate time is π χ= /t qq Kerr
(q = 2 for the two-photon process and q = 8 for the four-photon

process). The coherent states forming the encoded quantum state, will have their amplitude

reduced by the factor κ−( )texp q1ph , and their phase will drift by a random phase with standard

deviation δφ κ= ϕtq. When the pumping is switched back on at time tq, these errors will be

reduced by a factor which grows exponentially with the cat size, as show in appendix A. Hence
these errors can be suppressed in the limit where χ κ κ≫ ϕ,

Kerr 1ph , and for a sufficiently large α.
Single-qubit θX gate and two-qubit entangling gate. These operations would be performed

in concurrence with the four-photon process, which continuously and strongly projects to the

state space generated by α α± ±{ }i, . Consider the case of the single-qubit θX gate. Starting

with the state + = α
( )

Z
0mod4 and in the absence of single-photon jumps, the system evolves at

time t to ψ Ω Ω= −α α( ) ( ) ( )t t i tcos sin( ) ( )
X X

0mod4 2mod4  . With the additional presence

of one single-photon jump during this time, this state becomes ψ Ω=( ) ( )t ta cos X

Ω−α α( )i tsin( ) ( )
X

3mod4 1mod4  . Although the qubit has changed basis from the even-parity

cat states to their odd-parity counterparts α α{ },( ) ( )3mod4 1mod4  , the Zeno dynamics ensures

that the information preserved in the qubit continues to be rotated by θX . After two- and three-
photon jumps, we respectively get back to the even and odd parity manifolds, but this time with
the order of the basis elements reversed (equivalent to a bit-flip). Finally, after four jumps, we end
up in the initial logical basis as if no jump has occurred. This simple reasoning indicates that a
continuous photon number parity measurement during the operation should ensure the protection
of the rotating quantum information against the single-photon decay channel. The simulations of
figure 6 confirm the fact that performing such a single qubit θX gate, in the presence of the single-
photon decay channel does not increase the decay rate or lead to new decay channels. Continuous
photon number parity measurements should therefore correct for such loss events and protect the
qubit while the operation is performed. These simulations correspond to the master equation:

ρ ϵ ρ ϵ ρ κ ρ κ ρ˙ = − + + − + +† †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ [ ]i a a a a a a, , .X
2 2

4ph
4 4

4ph
4

1ph 
We take ϵ = 0X and ϵ κ= /20X 4ph respectively in figures 6(a) and (b) and κ κ= /2001ph 4ph for

both plots. As can be seen through these plots, the decay rate remains the same in absence or
presence of the two-photon driving field ensuring the arbitrary rotation around the x-axis.
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Additionaly, the probability of having more than one jump during the operation time remains
within the range of 1%, indicating that with such parameters one would not even need to
perform photon-number parity measurements during the operation and that a measurement after
the operation would be enough to ensure a significant improvement in the coherence time.

The same kind of analysis is valid for the two-qubit entangling gate. A single-photon loss
event for one (or both) of the qubits will lead to switching the associated logical qubit basis of
the entangling Hamiltonian Ω σ σ⊗XX x

L
x

L1, 2, , from the even parity manifold to the odd parity one.
We can keep track of the encoding subspace for each qubit, by measuring the photon number
parity of the two cavity modes after the operation.

Single-qubit π /2-rotation around z-axis. In order to show that the Kerr effect can be
applied in a fault-tolerant manner to perform such a single-qubit operation, we apply some of
the arguments of the supplemental material of [1]. We need to consider the effect of photon loss
events on the logical qubit during such an operation.
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Figure 6. Decay of the unprotected qubit (no photon number parity measurements)
encoded in the 4-cat scheme due to single-photon loss channel. (a) The qubit is

initialized in the state ψ = α
( )

0
0mod4 and no gate is applied on the qubit ( ¯ =n 4

similarly to previous simulations). The decoherence due to the single-photon loss
channel leads to a decay in the fidelity with respect to the initial state and creates a

mixture of this state with the three other states ψ ψ = αa a ( )
0 0

3mod4 ,

ψ ψ = αa a ( )2
0

2
0

2mod4 and ψ ψ = αa a ( )3
0

3
0

1mod4 . (b) In the pre-

sence of the squeezing Hamiltonian performing the θX operation, this decoherence

rate remains similar and mixes the desired state ψ Ω= −α( ) ( )t tcos ( )
X

0mod4
Ω α( )i tsin ( )

X
2mod4 with the states ψ ψ Ω= −α( ) ( ) ( )t t ta a cos ( )

X
3mod4

Ω α( )i tsin ,( )
X

1mod4 ψ ψ Ω Ω= −α( ) ( ) ( ) ( )t t t i ta a cos sin( )
X X

2 2 2mod4
α
( )0mod4 and ψ ψ Ω Ω= −α α( ) ( ) ( ) ( )t t t i ta a cos sin .( ) ( )

X X
3 3 1mod4 3mod4 

The photon jumps inducing such mixing of the quantum states are however tractable
through continuous photon number parity measurements.



We note first that the unitary generated by the Kerr Hamiltonian does not modify the
photon number parity as this Hamiltonian is diagonal in the Fock states basis. Therefore, photon
number parity remains a quantum jump indicator in presence of the Kerr effect. Now, let us
assume that a jump occurs at time t during the operation: the state after the jump is given by

ψ ψ=χ χ χ† † †( ) ( )e e ea a ,it it ita a a a a a
0

2
0

Kerr Kerr Kerr

2 2

where we have applied the commutation relation = +† †( ) ( )f fa a a a a I a, f being an arbitrary

analytic function. This means that up to a phase space rotation χ †

ei t a a2 Kerr , the effect of a photon
jump event commutes with the unitary generated by the Kerr Hamiltonian. Assuming much
faster parity measurements than the Kerr dynamics and keeping track of both the number of
parity jumps p and the times of their occurrences

=
{ }tk k

p

1
, the state after the operation is fully

known. In particular, the four-component Schrödinger cat state is rotated in phase space by an

angle of χ∑ =( )t2
k

p
k Kerr1

. We can take this phase space rotation into account by merely changing

the phase of the four-photon drive ϵ4ph in the four-photon process.

4. Towards an experimental realization within a circuit QED framework

4.1. Two-photon driven dissipative process

In this subsection, we propose an architecture based on Josephson circuits which implements
the two-photon driven dissipative process. Using the coupling of cavity modes to a JJ, single-
photon dissipation, and coherent drives, we aim to produce effective dynamics in the form of
equation (1). These are the same tools used in the Josephson bifurcation amplifier to produce a
squeezing Hamiltonian [28] and here we will show that, by selecting a particular pump
frequency, we can achieve a two-photon driven dissipative process. Furthermore, in the next
subsection, we show that by choosing adequate pump frequencies, we may engineer the
interaction terms needed to perform the logical gates described in sections 3.1, 3.2 and 3.3. An
architecture suitable for the four-photon driven dissipative process is subject to ongoing work.

The practical device we are considering is represented in figure 7. Two cavities are linked
by a small transmission line in which a JJ is embedded. This provides a nonlinear coupling
between the modes of these two cavities [20, 22]. The Hamiltonian of this device is given by
[29]

∑ ∑Φ Φ Φω
ϕ ϕ

ϕ= − + = +† †
⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟ ( )EH a a a acos

1
2

, , (9)
k

k k k J
k

k k k0

0 0

2

where EJ is the Josephson energy, ϕ =  / e2
0

is the reduced superconducting flux quantum, and

ϕ
k
is the standard deviation of the zero point flux fluctuation for mode k of frequency ωk. Here

we are only concerned by the dynamics of the fundamental modes of the two cavities and we
assume that all other modes are never excited. We denote a and b the annihilation operators of
these two modes and ωa, ωb their respective frequencies. We assume that Φ ϕ∣ ∣ ≪/ 1

0
so that we

can neglect sixth and higher order terms in the expansion of the cosine. In order to select the
terms of interest, we propose to drive mode b with two fields: a weak resonant drive ϵ ( )tb and a
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strong off-resonant pump ϵ ( )tp . The frequencies of modes a and b are shifted by the nonlinear

coupling. The dressed frequencies are noted ω̃a and ω̃b and we take ϵ ϵ ω= ˜( )( )t t2 cosb b b and

ϵ ϵ ω= ( )( )t t2 cosp p p with:

ω ω ω= ˜ − ˜2 .p a b

We place ourselves in a regime where rotating terms can be neglected and the remaining terms
after the rotating wave approximation constitute the effective Hamiltonian

ϵ
χ χ

χ= + − + + + +† † † † † † †

 ( ) ( ) ( ) ( ) ( ) ( )gH a b a b b b a a b b a a b b
1

2 2
. (10)b

aa bb
ab2ph 2ph

2 2 2 2

While the induced self-Kerr and cross-Kerr terms χ
aa
, χ

bb
and χ

ab
can be deduced from the

Hamiltonian of equation (9) through the calculations of [29], one similarly finds
ϵ

ω ω
χ=

− ˜
g 2.

p

p b
ab2ph

More precisely, this model reduction can be done by going to a displaced rotating frame in
which the Hamiltonian of the pumping drive is removed. Next, one develops the cosine term in
the Hamiltonian of equation (9) up to the fourth order and removes the highly oscillating terms
in a rotating wave approximation.

Physically, the pump tone ϵp allows two-photons of mode a to convert to a single-photon

of mode b, which can decay through the lossy channel coupled to mode b. The drive tone ϵb
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Figure 7. Proposal for a practical realization of the two-photon driven dissipative
process. Two cavities are linked by a small transmission line in which a Josephson
tunnel junction is embedded. This element provides a nonlinear coupling between the
modes of these two cavities. A pump tone at frequency ωp is applied to the readout
cavity. We let a and b be the annihilation operators for the fundamental modes of the
cavities, and ω̃a and ω̃b be their frequencies in the presence of all couplings and the

pump. Setting ω ω ω= ˜ − ˜2p a b, we select an interaction term of the form +†a b c.c2 .
Combining this interaction with a drive and strong single-photon dissipation of mode b
leads to the desired dynamics for mode a of the form equation (1). In this way, quantum
information can be stored and protected in mode a.



inputs energy into mode b, which can then be converted to pairs of photon in mode a. The last
three terms in equation (10) are the Kerr and cross-Kerr couplings inherited from our proposed
architecture. Although these are parasitic terms, we show through numerical simulations that
their presence does not deteriorate our scheme.

Taking into account single-photon decay of the mode b, the effective master equation is
given by:

ρ ρ κ ρ˙ = − +⎡⎣ ⎤⎦ [ ]i
H b, . (11)b2ph 2ph 2ph 2ph


Neglecting the Kerr and cross-Kerr terms and assuming that ϵ κ≪g , b b2ph

, we adiabatically

eliminate mode b [7, 30] and find a reduced dynamics for mode a of the form of equation (1)
where

ϵ
ϵ

κ
κ

κ
α ϵ= = =

g
g

2 g
,

4
and .

b

b b
b2ph

2ph
2ph

2ph
2

2ph

One can check the validity of this model reduction by comparing the numerical simulation
of equation (1) to the master equation (11). Fixing κ = 1b

4 we take χ χ= =0.0015,
aa bb

χ =0.185, 0.033
ab

and ϵ ω ω˜ − =( ) 3p b p , and hence =g 0.05
2ph

, ϵ = g4b 2ph
(to fix the average

number of photons in the target cat to 4). In figure 8, we compare the fidelity to the target cat
state of solutions of equation (11) (blue solid line) and solutions of equation (1), starting
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Figure 8. Numerical simulation of equation (11) (full blue line) and equation (1)
(dashed red line). We represent the fidelity of the state w.r.t. the state α

+ , where is a

normalization factor, and α ϵ= gb 2ph
(here α¯ = =n 42 ). The dashed and full curves

have comparable convergence rates and converge to the same state. This indicates that
the reduced model of equation (1) is a faithful representation of the complete model
equation (11). The finite discrepancy is due to the finite ratio between ϵg , b2ph

and κb,

and the presence of non-zero Kerr and cross-Kerr terms.

4 We have intentionally avoided to provide the units to only focus on the separation of time-scales. However, all
these parameters will be within the reach of current circuit QED setups if their values are in units of π ×2 MHz.



in vacuum. The two curves both converge to a fidelity close to one, which indicates that the steady
state of equation (11) is hardly affected by the presence of Kerr and cross-Kerr terms and by the
finite ratio of ϵg , b2ph

to κb.

4.2. Logical operations

Rotations of arbitrary angles around the x-axis for the logical qubit α α
+ −{ },  : simply

adding a drive of amplitude ϵa resonant with mode a will add a term proportional to ϵ ϵ+* †a aa a

in equation (1). In the limit where ϵ κ≪a ph2 , this will induce coherent oscillation between the

two states around the Bloch sphereʼs x-axis, as explained in section 3.1.
Entangling gate between two logical bits: we propose the architecture of figure 9 to couple

two qubits protected by a two-photon driven dissipative process. Two modules, each composed
of a pair of high and low Q cavities, are coupled through a JJ embedded in a waveguide
connecting the two high Q cavities. This JJ provides a nonlinear coupling, which, together with

a pump at frequency ω ω ω= ˜ − ˜( )/2ZZ a a1 2
, induces an interaction of the form +ϕ †e a a c.c.i

1 2
pump

Such a term performs an entangling gate between two logical qubits, as described in section 3.2.
π /2-rotation around z-axis: as mentioned throughout the previous subsection, the mere

fact of coupling the cavity mode to a JJ induces a self-Kerr term on the cavity mode. As
proposed in section 3.3, this could be employed to perform a π /2-rotation around the z-axis in a
similar manner to [20]. One only needs to turn off all the pumping drives and wait for π χ/

aa
.

4.3. Extension to four-photon driven dissipative process

Similarly to the case of the two-photon process, we need to achieve an effective Hamiltonian of
the form
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Figure 9. Architecture for coupling two qubits protected by the two-photon driven
dissipative processes. Two modules composed of a pair of high and low cavities are
connected through a central JJ. This JJ provides a nonlinear coupling between the
two storage modes a1 and a2 of each module. Adding a pump at frequency ω =XX

ω ω˜ − ˜( )/2a a1 2 induces an interaction term of the form +†a a c.c.1 2 , thus allowing for the
entangling gate detailed in section 3.2



ϵ= + + +† † †

 ( ) ( )H g a b a b b b
1

.b4ph 4ph
4 4

Taking into account the single-photon decay of the mode b of rate κb such that ϵ κ≪g , b b4ph
, we

can adiabatically eliminate the mode b and find a reduced dynamics for mode a of the form of
equation (4). The problem is therefore to engineer in an efficient manner the Hamiltonian H4ph.

Indeed, the same architecture as in figure 7, together with a pump frequency of

ω ω ω= ˜ − ˜4p a b, should induce an effective Hamiltonian term of the form +† †( )g a b a b
4ph

4 4 . One

can easily observe this by expanding the cosine term in equation (9) up to the sixth order in
Φ ϕ/

0
and by applying a rotating wave approximation, leading to an effective coupling strength

of = ϵ
ω ω

ϕ ϕ

ϕ− ˜g E

4ph 24
J p

p b

a b
4 2

0
6 . However, such an architecture also leads to other significant terms

limiting the performance of the process. In particular, through the same sixth order expansion,

one can observe an amplified induced Kerr effect on the mode a: χ †( )a a
aa
pumped 2

with

χ = =ϵ

ω ω

ϕ ϕ

ϕ

ϵ
ω ω− ˜ − ˜ ( )

g
aa

Epumped
4

6

4ph
J p

p b

a b p

p b

2

2

4 2

0
6 .

Inspired by the architecture of the (JRM) [31, 32], which ensures an efficient three-wave
mixing, we propose here a design which should induce very efficiently the above effective
Hamiltonian while avoiding the addition of extra undesirable interactions. The JRM
(figure 10(a)) provides a coupling between the three modes (as presented in figure 10(c)) of
the form
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Figure 10. Josephson ring modulators (JRM) providing desired interactions between
field modes. (a) JRM developed to ensure quantum limited amplification of a quantum
signal or to provide frequency conversion between two modes. The signal and idler are
respectively coupled to the X and y modes, as represented in (c) and the pump drive is
applied on the z mode. (b) A modification of the amplifier JRM to ensure an interaction
of the form of equation (12). Such an interaction should allow us to achieve the driven
dissipative four-photon process without adding undesired Hamiltonian terms.
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2
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2

2
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0
2
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0

where ϕ= /E LL 0
2 , Φ ϕ= + †( )a aX Y Z X Y Z X Y Z X Y Z, , , , , , , , , and Φ ϕ/ext 0

is the dimensionless external flux

threading each of the identical four loops of the device. Furthermore, the three spatial mode
amplitudes Φ ϕ ϕ= −X 3 1

, Φ ϕ ϕ= −Y 4 2
and Φ ϕ ϕ ϕ ϕ= + − −Z 2 4 1 3

are gauge invariant

orthogonal linear combinations of the superconducting phases of the four nodes of the ring
(figure 10(c)).

In the same manner the design of figure 10(b), for a dimensionless external flux of
Φ ϕ π=/ /4ext 0

on the small loops and Φ ϕ π=/ /3 3 4ext 0
on the big loops, induces an effective

interaction Hamiltonian of the form

Φ Φ Φ Φ Φ Φ Φ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ

= + + − +′
⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥H

E
E

4 2
2 2 sin

2
sin

2
sin

2
cos

2
. (12)L X Y Z

J
X Y Z Z

JRM

2

0
2

2

0
2

2

0
2

0 0 0 0

Similarly to [32], by decreasing the inductances L and therefore increasing the associated EL,
one can keep the three modes of the device stable for such a choice of external fluxes. This
however comes at the expense of diluting the nonlinearity.

Now, we couple the z mode of the device to the high-Q storage mode a, its y mode to the
low-Q b mode, and we drive the X mode by a pump of frequency ω ω˜ − ˜4 a b (ω̃a and ω̃b are the
effective frequencies of the modes a and b). By expanding the Hamiltonian of equation (12) up

to sixth order terms in ϕ = Φ Φ Φ
ϕ ϕ ϕ( ), ,X Y Z

0 0 0

, the only non-rotating term will be of the form

ϕ ϕ ϕ
ϕ

= − +ϕ ϕ† − †( )H n E e ea b a b
2

768
,J

Z Y X i i
eff pump

4

0
6

4 4pump pump

where ϕ
pump

is the phase of the pump drive and npump is the average photon number of the

coherent state produced in the pump resonator [33].

5. Summary and conclusions

We have shown that one can achieve a logical qubit basis of cat states α α
+ −{ },  through a

two-photon driven dissipative process. A photon dephasing error channel is translated to a
phase-flip error rate which is exponentially suppressed by the size α 2 of the cat states. A single-
photon decay channel, however, leads to a bit-flip error channel whose rate is α 2 times larger
than the single-photon decay rate. In order to protect the qubit against such a prominent decay
channel, we introduce the similar four-photon driven dissipative process whose logical qubit

basis is given by the Schrödinger cat states α α{ },( ) ( )0mod4 2mod4  . Once again, the photon

dephasing error channel is replaced by a phase-flip error channel whose rate is suppressed
exponentially by the size α 2 of the Schrödinger cat state. A single-photon decay channel leads
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to the transfer of quantum information to a new logical basis given by odd Schrödinger cat

states α α{ },( ) ( )3mod4 1mod4  . However, we can keep track of single-photon decay by

continuously monitoring the photon number parity. Therefore, the cat-state logical qubit can be
protected against single-photon decay while also having photon dephasing errors exponentially
suppressed.

Next, we have introduced a complete set of universal quantum gates that could be
performed on the encoded and protected logical qubits. This set consists of arbitrary rotations
around the x-axis of a single qubit, a two-qubit entangling gate, and a single-qubit π /2 rotation
around the z-axis. The first two gates can be performed in presence of the driven dissipative
process and through quantum Zeno dynamics. For the last single-qubit gate, we explore the
induced Kerr effect of the quantum harmonic oscillator while the driven dissipative process is
turned off. We illustrate that these gates can be performed without propagating errors due to
photon dephasing or single-photon loss. They have therefore the potential of being integrated in
a fault-tolerant quantum computation architecture.

Finally, we have also discussed the implementation of these tools within the framework of
circuit quantum electrodynamics. Inspired by methods used in Josephson parametric
amplification, we propose simple experimental schemes to achieve, effectively, the multi-
photon driven dissipative processes and also various quantum gates introduced through the
paper. In particular, we have implemented in our laboratory the system ensuring the two-photon
driven dissipative process and the preliminary experimental results are in good agreement with
the theory.
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Appendix A. Asymptotic behavior of the two- and four-photon processes

A.1. Asymptotic state for arbitrary initial state of the two-photon process

As stated in section 2.1, all initial states evolving under the two-photon driven dissipative
process from equation (1) will exponentially converge to a specific (possibly mixed) asymptotic
density matrix defined on the Hilbert space spanned by the two-component Schrödinger cat

states α α
+ −{ },  with α α= θαei . In order to characterize the Bloch vector of this asymptotic

density matrix ρ∞ (equation (2)), it is sufficient to determine three degrees of freedom: the

population of one of the cats ρ= α α++
+

∞
+( )c   and the complex coherence between the two

ρ= α α+−
−

∞
+( )c   . There exist conserved quantities ++ +−J J, corresponding to these degrees of
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freedom [33] such that ρ=++ ++
† }{c Jtr (0) and ρ=+− +−

† }{c Jtr (0) for any initial state ρ (0).

These conserved quantities are given by

∑=++
=

∞

J n n2 2 (A.1)
n 0

∑α
α

α=
−

+
θ

+−
=−∞

∞

+−
− +α

( ) ( )( )
J

q
I J e

2

sinh 2

1

2 1
, (A.2)( ) ( )

q

q

q
q i q

2

2

2 2 1

where ( )I .q is the modified Bessel function of the first kind and

=

− !!

+ !!
⩾

!!

+ − !!
<

+−

†

† ++
+

++
† −

†

†

⎧

⎨
⎪
⎪⎪

⎩
⎪
⎪⎪

( )
( )

( )
( )

J
q

J q

J
q

q

a a

a a
a

a
a a

a a

1

2
0

2 1
0

.( )q

q

q

2 1

2 1

In the above, !!= × − !!( )n n n 2 is the double factorial. To show that these operators are
indeed conserved, first note that an operator J evolves under equation (1) in the Heisenberg
picture, i.e.,

κ α α˙ = − + − −⋆ † † † †⎡⎣ ⎤⎦( )J J J J Ja a a a a a a a
1
2

, 2 . (A.3)2ph
2 2 2 2 2 2 2 2 2 2

For the case of equation (A.1), it is easy to see that ˙ =++J 0 since the two-photon system
preserves photon number parity and ++J is merely the positive parity projector. The off-diagonal

quantity from equation (A.2) is an extension of +−J ( )0 , the corresponding conserved quantity for
the non-driven (α = 0) dissipative two-photon process (first calculated in [35]; see also [34]).

Each +−J ( )q term in the sum for +−J evolves under equation (A.3) as

κ α α˙ = + − −+− +−
− ⋆

+−
+

+−
⎡⎣ ⎤⎦( )J q J J qJ

1
2

2 1 2 .( ) ( ) ( ) ( )q q q q
2ph

2 1 2 1

The above equations of motion for +−J ( )q mimic the recurrence relation

α α α α− + =− +
⎡⎣ ⎤⎦( ) ( ) ( )I I qI2 0q q q

2
1

2
1

2 2

satisfied by the Bessel functions in +−J and both can be used to verify that +−J is indeed
conserved. The square root in front of the sum for +−J is chosen such that

=α α+−
† + − }{Jtr 1  , which can be verified using

α
α

α=α α
θ−

+−
† + +α

( ) ( )J I e
2

sinh 2
(A.4)( ) ( )q

q
i q

2

2

2 2 1 
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as well as the identity (see equation (5.8.6.2) from [36])

∑ α α
α

α
−

+
=

=−∞

∞

( ) ( ) ( )( )
q

I I
1

2 1

sinh 2

2
. (A.5)

q

q

q q
2 2

2

2

A.2. Asymptotic state for an initial coherent state of the two-photon process

The conserved quantities ++ +−{ }J J, are sufficient to calculate the population ρ= α α++
+

∞
+c  

and coherence ρ= α α+−
−

∞
+c   of the asymptotic state for any initial state ρ (0). Letting

ρ β β=(0) with β β= θβei , the respective terms are

ρ= = + β
++ ++

† −( ){ }c J etr (0)
1
2

1 (A.6)2 2

∫ρ αβ

α
ϕ α β= = −

β

ϕ

π
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†

⋆ −
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− ( )
( )

{ }c J
i e

d e I etr (0)
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2 0
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2 2 2
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Equation (A.6) is the same simple result as the non-driven case (e.g. equation (3.22) in [32]). To
derive equation (A.7), we first apply equation (A.2) to obtain the sum

∑αβ

α
α β=

−
+

β
θ θ

+−

⋆ −

=−∞

∞
−α β

( )
( ) ( )( ) ( )c

e

q
I I e

2

sinh 2
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2 1
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This sum is convergent because the sum without the +q2 1 term is an addition theorem for Iq

(equation (5.8.7.2) from [34]). To put the above into integral form, we use the identity
(derivable from the addition theorem)

∫α β
π

ϕ α β= −
ϕ

π
ϕ π ϕ

=

+ ( )( ) ( )I I d e I e
1

2
.( )

q q
iq i2 2

0

2

0
2 2

Plugging in the above identity into equation (A.8), interchanging the sum and integral (possible
because of convergence), evaluating the sum (which is a simple Fourier series), and performing
a change of variables obtains equation (A.7).

When α = 0, equation (A.7) reduces to equation (14) from [35]. Assuming real α and
using equation (5.8.1.15) from [36], one can calculate limits for large β 2 along the real and
imaginary axes in phase space:

α

α

=
−

⟶

= −
−

⟶

β α

β α

→∞ +−
−

→ ∞ +−

α

α
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e

c i
e
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1
2
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1

lim
1
2

erfi 2

1
0

,

i

4

1
2

4

2

2

where erf ( ). and erfi ( ). are the error function and imaginary error function, respectively. Both
limits analytically corroborate figure 1 and show that the two-photon system is similar to a
classical double-well system in the combined large α β, regime.
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A.3. Influence of dephasing on the two-photon process

Equation (2) implies that while the states α
± define the basis of our logical qubit, the

expectation values of the conserved quantities determine the state of the qubit (or equivalently

its Bloch vector). Now letʼs consider adding the photon dephasing dynamics κϕ
†⎡⎣ ⎤⎦a a to

equation (1) and estimate what would happen to the qubit basis elements and more importantly
the conserved quantities (determining the effect on the encoded information).

Since dephasing preserves parity, the positive parity projector ++J remains conserved and
the corresponding population of the cat-state ++c thus remains unchanged. The quantity
representing the coherence ( +−J ) to first order decays exponentially at a rate proportional to κϕ.

Noting that the population of the states ± = α
±

Z  are conserved, this means that photon
dephasing induces only phase-flip errors on our logical qubit. However, this phase-flip rate is
itself exponentially suppressed with increasing the number of photons in the cat state α 2. To
see this, we evaluate the first-order perturbative correction due to dephasing on the asymptotic
manifold. Since α α

+ −  and +−J are right and left eigenvectors of the super-operator from

equation (1) and since dephasing preserves parity, the first order decay rate γ −phase flip
is

γ κ κ= − = −ϕ α α ϕ α α− +−
† † + − − †

+−
† +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ }J Ja a a atr .

phase flip
     

In the above, we have re-arranged for the adjoint of  to act on +−J instead of α α
+ −  and

used =† † †⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦a a a a  because †a a is Hermitian. Since +−J ( )q consist of matrix elements

+ +n n q2 2 1 2 for =n 0, 1 ,..., each term in the sum for +−J has the simple equation of
motion

κ† = − + †ϕ
†

+− +−
⎡⎣ ⎤⎦ ( ) ( )J q q Ja a

1
2

2 1 .( )q2
The subsequent evaluation of the trace and sum results in the rate

γ κ α
α

= ϕ− ( )sinh 2
(A.9)

phase flip

2

2

given in section 2.1. We have numerically confirmed (figure A1(a)) that this is indeed the first-
order correction to the asymptotic manifold. In the figure, we plot versus α the magnitude of
the eigenvalue of the evolution operator from equation (3) associated with the decay rate of +−J

(which is precisely the phase-flip rate γ −phase flip
). For small values of κ κϕ/ 2ph, the numerical result

approaches our analytical estimate.
It is worth noting that under the effect of dephasing, the cat-states that comprise the logical

qubit basis elements will acquire a small random phase ( α
± becomes α

±
ϕei where ϕ is a small

random phase). Indeed, as an ensemble-averaged result, one can observe that each of the two-
dimensional Gaussian peaks that represent the cat state in the phase space slightly smear.
However, this smearing merely changes the structure of our qubit basis elements and does not
affect the encoded quantum information (represented by ++J and +−J ).
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A.4. Asymptotic behavior of the four-photon process

The asymptotic manifold of the four-photon process from equation (4) is given by density

matrices defined on the four-dimensional Hilbert space spanned by α
μ{ }( )mod 4 (with

μ = 0, 1, 2, 3). By tracking the parity, we restrict the dynamics to the Hilbert space spanned by

α α{ },( ) ( )0 mod 4 2 mod 4  comprising our logical qubitʼs basis. The corresponding conserved

quantity for the populations of α
( )0 mod 4 and α

( )2 mod 4 is once again identical to the non-

driven case [34], = ∑ =
∞

J n n4 4
n00 0

. While an analytical expression for the other conserved
quantity J02 remains to be found, here we provide a numerical analysis of the influence of the
photon dephasing on the four-photon process.

Figure A1(b) shows a plot similar to figure A1(a), but now for γ −phase flip
of the logical qubit

of the four-photon process. With the exception of a slight delay in the exponential suppression
of the induced phase-flip rate, one observes that this suppression is almost identical to the case
of the two-photon process.
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Figure A1. (a) Plot versus α of the eigenvalue γ −phase flip
(scaled by κϕ/2) of the evolution

operator of equation (3) associated with the decay of +−J ( = γ
+− +−

− −( ) ( )J t J e0 tphase flip ).
The plot includes the analytical estimate from equation (A.9) as well as two numerical
plots for various κ κϕ/ 2ph. One can see that the eigenvalue exponentially converges to

zero with increasing the photon number in the cat state α 2. (b) Similar plot for equation

(4) with the addition of κϕ
†⎡⎣ ⎤⎦a a , i.e., the eigenvalue of the evolution operator

associated to the decay of J02 encoding the coherence term α α
( ) ( )0 mod 4 2 mod 4  of the

four-photon process qubit. The phase-flip rate is now scaled by κϕ2 which represents the
rate for the case of α = 0.
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