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Variable delays ubiquitous in internal combustion engines

communication lags (ECU)

spatially distributed after
treatment devices

physical flow transportation
(transport delay)

few embedded sensors

measurement dead times

Delays are prejudicial to closed-loop stability and transient performances

Thesis objective

Design real-time control strategies to compensate uncertain and time-varying delays
using a unified methodology.
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Input delay compensation

Dynamics under consideration

Ẋ(t) =AX(t)+BU(t−D)

with X ∈ Rn, U scalar and D > 0 constant.
(A,B) controllable and K ∈ R1×n s.t. A+BK Hurwitz.

Prediction-based control law (Smith,1959)

U(t) =KX(t +D) = K

[
eADX(t)+

∫ t

t−D
eA(t−s)BU(s)ds

]
achieves exact compensation of the input delay

finite spectrum assignment (FSA) (Manitius and Olbrot, 1978)

reduction method (Artstein, 1979)

Closed-loop delay compensation

Ẋ = (A+BK )X(t) delay-free exponential convergence after D units of time
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Input delay compensation

Illustrative scalar unstable example

ẋ = x +U(t−D)

with initial conditions x(0) = 1 and u(s) = 1 , s ∈ [−D,0]
Feedback gain chosen as K =−2
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(a) D = 0.05 s (b) D = 0.5 s

Prediction-based control laws

Improvement of transient performances

Delay-independent behavior as Ẋ = (A+BK )X(t)
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Time-varying input delay compensation

Ẋ(t) = AX +BU(r(t)) with r(t) = t−D(t)

Time-varying state prediction horizon

Exact delay compensation is achieved with

U(t) = KX(r−1(t))

provided that
1 D time-differentiable and uniformly bounded
2 r is invertible (i.e. |Ḋ|< 1)

for a constant delay, D > 0, r−1(t) = t +D

r−1(t) 6= t +D(t)
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Time-varying input delay compensation

Ẋ(t) = AX +BU(r(t)) with r(t) = t−D(t)

Time-varying state prediction horizon

Exact delay compensation is achieved with

U(t) = KX(r−1(t))

provided that
1 D time-differentiable and uniformly bounded
2 r is invertible (i.e. |Ḋ|< 1)

for a constant delay, D > 0, r−1(t) = t +D

r−1(t) 6= t +D(t) : for the control law U(t) = KX(t +D(t)),

Ẋ(t) =AX(t)+BU(t−D(t)) = AX(t)+BKX(t−D(t)+D(t−D(t))︸ ︷︷ ︸
6=0 a priori

)

requires to predict future values of the delay
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Input delay compensation : open questions

Constant input delay

U(t) =K

[
eADX(t)+

∫ t

t−D
eA(t−s)BU(s)ds

]
Time-varying input delay

U(t) =KX(r−1(t)) with r(t) = t−D(t)
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Constant input delay

U(t) =K

[
eADX(t)+

∫ t

t−D
eA(t−s)BU(s)ds

]
Time-varying input delay

U(t) =KX(r−1(t)) with r(t) = t−D(t)

robustness to delay mismatch ?

robustness to plant uncertainties ?

disturbance rejection ?

output feedback ?

Question

How to design delay-adaptive
prediction-based control tackling these
issues ?

the case of unknown delay variations
remains to be addressed

extension to input-dependent delay

Question

How to ensure causal robust compensation
for time- and input-varying delays ?
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Transport PDE and backstepping transformation [Krstic, 2008]

Ẋ(t) = AX(t)+BU(t−D)

Hyperbolic PDE delay representation

consider the distributed actuator
u(x , t) = U(t +D(x−1)), x ∈ [0;1] Ẋ(t) = AX(t)+Bu(0, t)

Dut(x , t) = ux (x , t)
u(1, t) = U(t)

e−sD Ẋ = AX + BU(t−D)

convection direction

1 0

x

U(t)

u(1, t)

U(t−D)

u(0, t)

X(t)
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Ẋ(t) = AX(t)+BU(t−D)

Hyperbolic PDE delay representation

consider the distributed actuator
u(x , t) = U(t +D(x−1)), x ∈ [0;1] Ẋ(t) = AX(t)+Bu(0, t)

Dut(x , t) = ux (x , t)
u(1, t) = U(t)

Backstepping transformation :

change of variables (X ,u)→ (X ,w) to
obtain the target system Ẋ(t) = (A+BK )X(t)+Kw(0, t)

Dwt(x , t) = wx (x , t)
w(1, t) = 0

sol. : w(x , t) =u(x , t)−KeADx X(t)−DK
∫ x

0
eAD(x−y)Bu(y , t)dy

=u(x , t)−KX(t + xD) ⇒ u(1, t) = U(t) = KX(t +D)
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Transport PDE and backstepping transformation [Krstic, 2008]

Ẋ(t) = AX(t)+BU(t−D)

Hyperbolic PDE delay representation

consider the distributed actuator
u(x , t) = U(t +D(x−1)), x ∈ [0;1] Ẋ(t) = AX(t)+Bu(0, t)

Dut(x , t) = ux (x , t)
u(1, t) = U(t)

Backstepping transformation :

change of variables (X ,u)→ (X ,w) to
obtain the target system Ẋ(t) = (A+BK )X(t)+Kw(0, t)

Dwt(x , t) = wx (x , t) (1)
w(1, t) = 0 (2)

sol. : w(x , t) =u(x , t)−KeADx X(t)−DK
∫ x

0
eAD(x−y)Bu(y , t)dy

=u(x , t)−KX(t + xD) ⇒ u(1, t) = U(t) = KX(t +D)

(1)⇒ linear parameterization
(2)⇒ Lyapunov-Krasovskii analysis
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General prediction-based delay-adaptive scheme

We investigate robust compensation for different versions of the general linear system{
Ẋ(t) =A(θ)X(t)+B(θ)[U(t−D)+d]

Y (t) =CX(t)

Xr(θ̂)

Y r Ur(θ̂)

Y (t)

Transformed actuator
ŵ(x, t)

Estimated transport and error
û(x, t) and ê(x, t)

Calculation of the state
and control references

d

{
Ẋ = AX + B[U(t−D) + d]
Y = CX

Y (s) =
a(s)e−Ds

b(s)
[U(s)+d]

STATE-SPACE SYSTEM

or PROCESS

U(t)

Y (t) Prediction-based control law
U(t)

Observer
X̂(t) (Chap. 5)

B
lo

ck
(X̂

)

Delay adaptation
(Condition 1 or 2)

˙̂
D(t) (Chap. 4)B

lo
ck

(D̂
)

Parameter adaptation
˙̂
θ(t) (Chap.3)

B
lo

ck
(θ̂

)
B
lo

ck
(d̂

)

Disturbance estimate
˙̂
d(t) (Chap.6)
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General methodology for Lyapunov analysis

D uncertain→ delay estimate D̂
Implementable control law :

U(t) = KXP(t + D̂) 6= KX(t +D)

with XP predicted using estimates

Question

What is the influence of the prediction error on closed-loop stability in case of

1 a time-varying delay update law ?

XP(t + D̂) = X(t + D̂(t))

2 plant parameter uncertainties ?

XP(t + D̂) = X
θ̂
(t + D̂)

3 an output feedback strategy ?

XP(t + D̂) = XX̂ (t + D̂)

4 disturbance rejection ?

XP(t + D̂) = Xd̂ (t + D̂)
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General methodology for Lyapunov analysis

Robustness of U(t) = KXP(t + D̂) 6=KX(t +D) ?

Estimation of distributed variables

û(x , t) =U(t + D̂(t)(x−1)) → control synthesis

ŵ(x , t) =û(x , t)−KXP(t + xD̂(t)) → Lyapunov analysis

with XP predicted state using erroneous estimates

Error variable PDEs{
D̂(t)ût(x , t) =ûx (x , t)+ ˙̂D(t)(x−1)ûx (x , t)

û(1, t) =U(t){
D̂(t)ŵt(x , t) =ŵx (x , t)+ ˙̂D(t)(x−1)ŵx (x , t)+ψ(x , t)

ŵ(1, t) =0

ψ source term
aggregating quantities
arising from the
estimation errors

Lyapunov-Krasovskii analysis for system state stability analysis

study of delay update law and robustness to other mismatches.

13 / 45



Introduction Constant delay adaptive scheme Transport delay robust compensation Conclusion

Local robust compensation result

Result

Consider the closed-loop system obtained using the control law

U(t) = KX(t + D̂(t)) = K

[
eAD̂(t)X(t)+

∫ t

t−D̂(t)
eA(t−s)BU(s)ds

]
with a delay estimate D̂ satisfying one of the following Growth Conditions. Define

Γ(t) =|X(t)|2 +‖u(t)‖2 +‖û(t)‖2 +‖ûx (t)‖2 +(D− D̂(t))2

There exist γ∗ > 0, R > 0 et ρ > 0 such that, provided Γ(0) < ρ and γD < γ∗, then

∀t ≥ 0 Γ(t)≤ RΓ(0)

X(t) →
t→∞

0 and U(t) →
t→∞

0

stability result, which can be generalized to tracking

(Lyapunov analysis giving conservative expressions of the bounds γ∗ and ρ)
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Growth conditions for the delay update law

Growth Condition 1 [Estimation improvement]

There exist M > 0 and τD ∈ C 0([0,+∞[) s.t.

˙̂D(t) =γDProj[D,D̄] {τD(t)}

∀t ≥ 0 , τD(t)(D− D̂(t))≥ 0 and |τD(t)|< M

or

Growth Condition 2 [Rate of change compliant with the overall dynamics]

There exist M > 0 and τD ∈ C 0([0,+∞[) s.t.

| ˙̂D(t)|=γDProj[D,D̄] {τD(t)}

|τD(t)| ≤M(|X(t)|2 +‖u(t)‖2 +‖ûx (t)‖2)
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Proof : backstepping transformation and error equations

Backstepping transformation

ŵ(x , t) = û(x , t)−K

[
eAD̂(t)x X(t)+ D̂(t)

∫ x

t−xD̂(t)
eA(t−s)U(s)ds

]
with û satisfying D̂(t)ût(x , t) = ûx (x , t)+ ˙̂D(t)(x−1)ûx (x , t)

Cascade ODE-PDE

Ẋ(t) =(A+BK )X(t)+Bŵ(0, t)+B[u(0, t)− û(0, t)]

D̂(t)ŵt =ŵx + ˙̂D(t)g(x , t)− D̂(t)KeAD̂(t)x B[u(0, t)− û(0, t)]

ŵ(1, t) =0

Asymptotically stable dynamics with additive terms :

one coupling term

two estimation error terms u(0, t)− û(0, t) ( ˙̂D at first order)

one source term in ˙̂D with g function of X(t), ŵ(ξ, t), ŵx (ξ, t) (ξ ∈ [0,x])
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Proof : Lyapunov-Krasovskii analysis

Consider the candidate functional

V(t) =X(t)T PX(t)+b1D
∫ 1

0
(1+ x)(u(x , t)− û(x , t))2dx

+b2D̂(t)
∫ 1

0
(1+ x)ŵ(x , t)2dx +b2D̂(t)

∫ 1

0
(1+ x)ŵx (x , t)2dx + D̃(t)2
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∫ 1
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(1+ x)(u(x , t)− û(x , t))2dx

+b2D̂(t)
∫ 1

0
(1+ x)ŵ(x , t)2dx +b2D̂(t)

∫ 1

0
(1+ x)ŵx (x , t)2dx + D̃(t)2

With Young’s inequality and the expression of g, one obtains

dJ/dt ≤−ŵ(0, t)2− 1
2
‖ŵ(t)‖2 +M1| ˙̂D(t)|V0(t)+M2|u(0, t)− û(0, t)|2

with V0(t) = |X(t)|2 +‖ŵ(t)‖2 +‖ŵx (t)‖2
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‖ŵ(t)‖2 +M1| ˙̂D(t)|V0(t)+M2|u(0, t)− û(0, t)|2

with V0(t) = |X(t)|2 +‖ŵ(t)‖2 +‖ŵx (t)‖2

Acting similarly with other modified L2-norms and judiciously choosing the
intermediate constants b1 and b2 yields either

V̇(t)≤− (η1− γDM2V(t))V0(t) for Growth Condition 1

or V̇(t)≤− (η2− γDM3V(t))V0(t)− (η3− γDM4)V0(t)2 for Growth Condition 2

18 / 45



Introduction Constant delay adaptive scheme Transport delay robust compensation Conclusion

Proof : Lyapunov-Krasovskii analysis

Consider the candidate functional

V(t) =X(t)T PX(t)+b1D
∫ 1

0
(1+ x)(u(x , t)− û(x , t))2dx
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(1+ x)ŵx (x , t)2dx + D̃(t)2

With Young’s inequality and the expression of g, one obtains
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with V0(t) = |X(t)|2 +‖ŵ(t)‖2 +‖ŵx (t)‖2

Acting similarly with other modified L2-norms and judiciously choosing the
intermediate constants b1 and b2 yields either

V̇(t)≤− (η1− γDM2V(t))V0(t) for Growth Condition 1

or V̇(t)≤− (η2− γDM3V(t))V0(t)− (η3− γDM4)V0(t)2 for Growth Condition 2

Stability follows by choosing V(0) and γD sufficiently small. Convergence is
obtained by applying Barbalat’s Lemma to |X(t)|2 and U(t)2
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General prediction-based adaptive control strategy

D uncertain→ delay estimate D̂ and U(t) = KXP(t + D̂(t)) 6= KX(t +D)

Question

What is the influence of the prediction error on closed-loop stability in case of

1 a time-varying delay update law ?
2 plant parameter uncertainties ?

3 an output feedback strategy ?
4 disturbance rejection ?

Answer

Robust compensation can be achieved for various combinations of the blocks below

Xr(θ̂)

Y r Ur(θ̂)

Y (t)

Transformed actuator
ŵ(x, t)

Estimated transport and error
û(x, t) and ê(x, t)

Calculation of the state
and control references

d

{
Ẋ = AX + B[U(t−D) + d]
Y = CX

Y (s) =
a(s)e−Ds

b(s)
[U(s)+d]

STATE-SPACE SYSTEM

or PROCESS

U(t)

Y (t) Prediction-based control law
U(t)

Observer
X̂(t) (Chap. 5)

B
lo

ck
(X̂

)

Delay adaptation
(Condition 1 or 2)

˙̂
D(t) (Chap. 4)B

lo
ck

(D̂
)

Parameter adaptation
˙̂
θ(t) (Chap.3)

B
lo

ck
(θ̂

)
B
lo

ck
(d̂

)

Disturbance estimate
˙̂
d(t) (Chap.6)
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Application to Fuel-to-Air Ratio (FAR) for SI engines

Stoichiometric blend for SI engines

Catalyst conversion efficiency optimal at
stoichiometry
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Normalized
Air/Fuel Ratio

Classical FAR control architecture

air path dedicated to the driver
torque request

fuel path adjusted (manipulated
variable = injected fuel mass)

feedback loop using an oxygen
sensor (Lambda sensor)

Injector

Lambda
sensor

Transport delay
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Application to Fuel-to-Air Ratio (FAR) for SI engines

Define the normalized Fuel-to-Air Ratio as follows

φ =
1

FARS

mf

masp
and φm the exhaust FAR measurement

Modeling of the composition from the intake chamber to Lambda sensor

masp

minj (1 − X)minj

mwΔt/τ

Dilution and transport delay

Sensor dynamics

Wall-wetting dynamics (indirect injection)

input = minj , output = φm
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Application to Fuel-to-Air Ratio (FAR) for SI engines

Modeling (cont.)

Defining the control variable as U(t) = 1
FARS

msp
inj

mest
asp(t) , one obtains


τφτφ̈m(t)+(τφ + τ)φ̇m +φm = θ(t)

[
τ(1−X)U̇(t−D)+U(t−D)

]
y(t) = φm

θ = θ(Ne,Fair ) with Fair unreliable

D = D(Ne,Fair )

an unknown gain θ ∈ [0.75,1.25], that varies with the operating point (and
extremely slowly over time)

an uncertain input time delay, estimated by D̂ = D̂(Ne) in [D, D̄] = [100,600] ms

only one available measurement, φm

⇒ combination of block (X̂) and block (θ̂)
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Application to Fuel-to-Air Ratio (FAR) for SI engines

Modeling (cont.)

Defining the control variable as U(t) = 1
FARS

msp
inj

mest
asp(t) , one obtains

Ẋ(t) = AX(t)+B(θ)U(t−D)

Y (t) = CX(t)

A =

 0 1

− 1
τφτ
− 1

τφ

− 1
τ

 , B(θ) =

 0

θ

ττφ

 and C = (1 τ(1−X))

The reference trajectories are (X r ,Ur (θ̂)) = ([φr 0]T ,φr /θ̂), with

an unknown gain θ ∈ [0.75,1.25], that varies with the operating point (and
extremely slowly over time)

an uncertain input time delay, estimated by D̂ = D̂(Ne) in [D, D̄] = [100,600] ms

only one available measurement, φm

⇒ combination of block (X̂) and block (θ̂)
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Application to Fuel-to-Air Ratio (FAR) for SI engines

Controller

Control law

U(t) =Ur (θ̂)−KX r +K

[
eAD̂X̂(t)+

∫ t

t−D̂
eA(t−s)B(θ̂)U(s)ds

]
Observer

˙̂X(t) = AX̂(t)+B(θ̂)û(0, t)−L(Y (t)−CX̂(t))

Update law (Lyapunov design)

˙̂
θ(t) =γ

[
(X̂(t)−X r )T P(θ̂)

b
− D̂K (θ̂)

∫ 1

0
(1+ x)[ŵ(x , t)+AD̂ŵx (x , t)]eAD̂x dx

](
0
φr

θ̂ττφ

)

Backstepping transformation of ê(x , t) = û(x , t)−Ur (θ̂)

∀x ∈ [0,1] , ŵ(x , t) =ê(x , t)− D̂
∫ x

0
KeAD̂(x−y)B(θ̂)ê(y , t)dy−KeAD̂x [X̂(t)−X r ]
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FAR, experimental results

Test-bench experiments

Experimental setup
1.4L four-cylinder SI engine
indirect injection

Comparison between
the proposed prediction-based strategy
a PID controller

Constant feedback gains K ,L and update gain γD

Torque variations at constant engine speed 0 10 20 30 40 50 60 70
3

4

5

6

7

8
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Time [s]
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ar
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FAR, experimental results
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FAR, experimental results
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Transport delay integral model

∫ t

t−D(t)
ϕ(s,u(s))ds = 1

with ϕ a strictly positive function of time and of the input

Transport between x = 0 and L with a speed u(t) of a variable ξ

The solution of the equation ξt = u(t)ξx satisfies
ξ(L, t) = ξ(0, t−D(t)) with D(t) defined by∫ t

t−D(t)

u(s)
L︸ ︷︷ ︸

=ϕ(u(s))

ds = 1

ξ(0, t) ξ(L, t)

u(t)

x
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Transport delay integral model

∫ t

t−D(t)
ϕ(s,u(s))ds = 1

with ϕ a strictly positive function of time and of the input

Transport between x = 0 and L with a speed u(t) of a variable ξ

The solution of the equation ξt = u(t)ξx satisfies
ξ(L, t) = ξ(0, t−D(t)) with D(t) defined by∫ t

t−D(t)

u(s)
L︸ ︷︷ ︸

=ϕ(u(s))

ds = 1

ξ(0, t) ξ(L, t)

u(t)

x

D > 0, as ϕ positive

Ḋ ≤ 1 (causal), as ϕ positive and

Ḋ(t) = 1− ϕ(t,u(t))
ϕ(t−D(t),u(t−D(t)))

≤ 1

D(t) can be calculated numerically : D 7→
∫ t

t−D ϕ(.)ds is a class K function
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Example 1 : the bath/shower

Warm water

Cold water

Tf

Tmoy

Tout

V = 1
control sensoru(t)

Transport delay

Tout = Tmoy (t−D(t)) with∫ t

t−D(t)

(1+u(s))
VP︸ ︷︷ ︸

=ϕ(u(s))

ds = 1 ⇒ input-dependent delay
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Example 2 : catalyst internal temperature

T 1
w T 2

w

From engine exhaust

Tg(0)

Lṁg

control = inlet gas temperature
(and the mass flow rate for hybrid
vehicle)

state = (distributed) temperature

residence time

From a low-frequencies analysis of the PDE thermal model, one can obtain

Tw (L, t) =
1

1+ τs
Tg(0, t−D(t))

with (k1,k2 > 0 given constants)∫ t

t−D(t)

k1

k2

ṁg(s)
L︸ ︷︷ ︸

=ϕ(s,u(s))

ds = 1 ⇒ time- and input-dependent delay
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Example 3 : exhaust gas recirculation (EGR) for SI engine

state = intake burned gas rate

control = reintroduced burned gas mass flow rate

Input delay defined as∫ t

t−D(t)

vgas(s)
L︸ ︷︷ ︸

=ϕ(s,u(s))

ds = 1 ⇒ time- and input-dependent delay

FIG.: IFPEn test-bench, 1.8L RSA F5Rt
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Example 4 : EGR for SI engine, practical implementation

vgas infinite dimensional and not measured

Practical delay calculation by perfect gas law fed by measurements∫ t

t−D(t)
vgas(s)ds = LP ⇒

∫ t

t−D(t)

rT (s)
P(s)

[Fair (s)+Fegr (s)]ds = VP

1→ 2 : homogeneous temperature and
pressure (measured)

2→ 3 : homogeneous pressure and linear
temperature profile

3→ 4 : intake manifold temperature
(measured)

23

4

1

three delays calculated sequentially by direct iterations
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Example 4 : EGR for SI engine, practical implementation

Intake burned gas rate model

Define xlp the low-pressure burned gas rate

ẋlp =α
[
−(Fegr (t)+Fair (t))xlp(t)+Fegr (t)

]
x(t) =xlp(t−D(t))

with D(t) the transport delay defined earlier and α a known constant (ambiant
conditions)

Open-loop burned gas rate estimate x̂

aspirated mass flow rate model
measurement of the low-pressure fresh air mass flow rate

}
delay calculated by the previous methodology

⇒ x̂lp

⇒ x̂
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Example 4 : EGR for SI engine, practical implementation

Experimental set-up

1.8L four cylinder turbocharged SI engine

no real-time intake burned gas rate measurement→ use of Lambda sensor

indirect validation methodology through estimation-based feedforward strategy
on the FAR

minj = FARSmest
air = FARS(1− x̂)masp

FAR staying close to 1←→ accurate estimate

Experimental results for a given operating point (Ne = 2000 rpm and IMEP = 8 bar)
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A general problem statement

Problem

To design a prediction-based control law for the (potentially unstable) plant
x(n) +an−1x(n−1) + . . .+a0x = b0u(t−D(t))∫ t

t−D(t)
u(s)ds = 1 with u ≥ u > 0
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A general problem statement

Problem

To design a prediction-based control law for the (potentially unstable) plant
x(n) +an−1x(n−1) + . . .+a0x = b0u(t−D(t))∫ t

t−D(t)
u(s)ds = 1 with u ≥ u > 0

The control law
u(t) = KX(r−1(t)) with r(t) = t−D(t)

achieves exact delay compensation but results into an implicit loop.

D(t) function of u(t)

u(t) function of D(t)
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A general problem statement

Problem

To design a prediction-based control law for the (potentially unstable) plant
x(n) +an−1x(n−1) + . . .+a0x = b0u(t−D(t))∫ t

t−D(t)
u(s)ds = 1 with u ≥ u > 0

Control : u(t) = KX(t +D(t)) 6= KX(r−1(t))

State-space representation : assume that X is fully known

A =


0 1 0
...

. . .
0 0 1
−a0 −a1 . . . −an−1

 , B =


0
...
0
b0


Question

Under which conditions is the control law u(t) = KX(t +D(t)) stabilizing ?
(without exact delay compensation)
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Methodology

Question

Under which conditions is the control law u(t) = KX(t +D(t)) stabilizing ?

1st step : find a condition on the delay variations D(t)

Lyapunov-Krasovskii analysis (backstepping)

2nd step : relate delay variations to the input and study the input dynamics

DDE stability results (Halanay)
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1st step : find a condition on the delay variations D(t)

Robust compensation of a time-varying delay

Consider the closed-loop system

Ẋ(t) =AX(t)+BU(t−D(t))

U(t) =Ur −KX r +K

[
eAD(t)X(t)+

∫ t

t−D(t)
eA(t−s)BU(s)ds

]
(1)

with U scalar, K s.t. A+BK Hurwitz and (X r ,Ur ) an equilibrium point.
D : R+ 7→ [0,D] is assumed to be time-differentiable.

There exists δ∗ ∈]0,1[ such that, provided ∀t ≥ 0 , |Ḋ(t)| ≤ δ∗, then (1) exponentially
converges to X r .

37 / 45



Introduction Constant delay adaptive scheme Transport delay robust compensation Conclusion

1st step : find a condition on the delay variations D(t)

Robust compensation of a time-varying delay

Consider the closed-loop system

Ẋ(t) =AX(t)+BU(t−D(t))

U(t) =Ur −KX r +K

[
eAD(t)X(t)+

∫ t

t−D(t)
eA(t−s)BU(s)ds

]
(1)

with U scalar, K s.t. A+BK Hurwitz and (X r ,Ur ) an equilibrium point.
D : R+ 7→ [0,D] is assumed to be time-differentiable.

There exists δ∗ ∈]0,1[ such that, provided ∀t ≥ 0 , |Ḋ(t)| ≤ δ∗, then (1) exponentially
converges to X r .

ẋ(t) =Ax(t)+Bu(t−D(t))

=Ax(t)+BKx(t−D(t)+D(t−D(t))︸ ︷︷ ︸
≈0 if |Ḋ| small

)
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Methodology

Question

Under which conditions is the control law u(t) = KX(t +D(t)) stabilizing ?

1st step : find a condition on the delay variations D(t)

Lyapunov-Krasovskii analysis (backstepping)

Solved : get |Ḋ(t)|< δ∗, t ≥ 0

2nd step : relate delay variations to the input and study the input dynamics

DDE stability results (Halanay)
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2nd step : relate delay variations to the input and study the input dynamics

∫ t

t−D(t)
u(s)ds = 1 , u ≥ u > 0

implies

Ḋ(t) =1− u(t−D(t))
u(t)

=
ε(t)− ε(t−D(t))

u(t)

Sufficient condition for |Ḋ(t)|< δ∗

max |εt | ≤
uδ∗

2

with ε(t) = u(t)−ur the error variable and εt : s ∈ [−D,0] 7→ ε(t + s)

Problem reformulation

To guarantee the condition

max |εt | ≤ δ =
uδ∗

2
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2nd step : relate delay variations to the input and study the input dynamics

We use the following stability result.

GAS system
x(n) + . . . + α0x = 0

`(t, xt, . . . , x
(n−1)
t )c

X = (x, . . . , x(n−1))T

Halanay (local)

Let x be a solution of the nth order DDE{
x(n) +αn−1x(n−1) + . . .+α0x = c`(t,xt , . . .x

(n−1)
t ) , t ≥ t0

xt0 = ψ ∈ C 0([−D,0],Ω)

where the left-hand side of the differential equation defines a polynomial which roots
have only strictly negative real parts, c > 0, ` is a continuous functional and Ω is a
neighborhood of the origin in which ` satisfies the sup-norm relation

∀t ≥ t0 , |`(t,xt , . . . ,x
(n−1)
t )| ≤max |Xt | (2)

with X = [x ẋ . . . x(n−1)]T . Then, there exists cmax > 0 such that, for any
0≤ c ≤ cmax , there exists γ≥ 0 and r > 0 such that

∀t ≥ 0 , |X(t)| ≤ r max |Xt0 |e−γ(t−t0)
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2nd step : relate delay variations to the input and study the input dynamics

ε dynamics

The error variable ε = u−ur with u defined through a prediction on the horizon D(t)
satisfies the differential equation

ε
(n) +(an−1 +b0kn−1)ε

(n−1) + . . .+(a0 +b0k0)ε =π0(εt , . . . ,ε
(n−1)
t )

+π1(εt , . . . ,ε
(n−1)
t )

where [−k0 . . .− kn−1]
∆
= K and π0 and π1 are polynomial functions s.t.

there exists a class K∞ function β such that

|π0(εt , . . . ,ε
(n−1)
t )| ≤ β(|K |)max |Et | with E(t) = [ε(t) ε̇(t) . . . ε(n−1)(t)]T

π1 is at least quadratic in εt , . . . ,ε
(n−1)
t

We apply the previous result X = E , ` = π0 +π1. To guarantee the property (2),

we decrease the gain magnitude |K |< k∗ such that |π0|< (1− ε)cmax max |Et |
we decrease the open set Ω such that |π1|< εcmax max |Et |

then ` < cmax max |Et | and one can apply Halanay, to guarantee the exponential
convergence of ε
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Transport delay robust compensation

Local small gain condition

Consider the closed-loop system
x(n) +an−1x(n−1) + . . .+a0x = b0u(t−D(t)) with

∫ t

t−D(t)
u(s)ds = 1

u(t) = ur +K

[
eAD(t)X(t)+

∫ t

t−D(t)
eA(t−s)Bφ(s)ds−X r

]
Consider the functional Θ(t) = |X(t)−X r |+ max

s∈[t−D,t]
|U(s)−Ur | and Q a symmetric

positive definite matrix. Assume that, for a given ε ∈ (0,1), there exists k∗ > 0 s. t.

β(|K0|) <(1− ε)
λ(P)λ(Q)

2λ(P)2
with P(A+BK0)+(A+BK0)

T P =−Q

for any K0 ∈ R1×n such that |K0|< k∗, with β defined in terms of by A and B. Then,
there exists θ : R+ 7→ R+ such that for any K ∈ R1×n such that |K |< k∗ and
Θ(0) < θ(|K |) the considered condition is fulfilled and the plant exponentially
converges to X r .
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Methodology

Question

Under which conditions is the control law u(t) = KX(t +D(t)) stabilizing ?

1st step : find a condition on the delay variations D(t)

Lyapunov-Krasovskii analysis (backstepping)

Solved : get |Ḋ(t)|< δ∗, t ≥ 0

2nd step : relate delay variations to the input and study the input dynamics

DDE stability results (Halanay)

Solved : independent nth order scalar delay equation

Answer

Small gain condition
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Conclusion

Scope of the thesis

Focus on the design of robust compensation for uncertain and time-varying delays

Constant input delay

How to design delay-adaptive
prediction-based control ?

Proposed general adaptive scheme

based on a delay transport PDE
representation and a backstepping
transformation

versatile control strategy

illustrated experimentally on FAR
regulation

Time-varying input-delay

How to ensure causal robust compensation
for time- and input-varying delays ?

Proposed robust compensation method

prediction over a time horizon equal to
the delay

two-steps methodology for
input-dependent delay, based on
Halanay DDE stability results

focus on integral transport delay
model (experimentally tested for EGR)

small gain condition (detuning,
robustness filter)
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