Robust control of variable time-delay systems

Theoretical contributions and applications to engine control

Delphine BRESCH-PIETRI

Ph.D. Defense
December 17, 2012

Advisor : N. Petit Supervisor : J. Chauvin
fj = €nergies
@ES @nouvelles

ParisTech



Context

Variable delays ubiquitous in internal combustion engines

@ communication lags (ECU)

@ spatially distributed after
treatment devices

@ physical flow transportation ﬂ/ T

(transport delay)
@ few embedded sensors

@ measurement dead times




Context

Variable delays ubiquitous in internal combustion engines

@ communication lags (ECU)

@ spatially distributed after
treatment devices

@ physical flow transportation ﬂ/ T

(transport delay)
@ few embedded sensors

@ measurement dead times

Delays are prejudicial to closed-loop stability and transient performances



Context

Variable delays ubiquitous in internal combustion engines

@ communication lags (ECU)

@ spatially distributed after
treatment devices

@ physical flow transportation ﬂ/ —

(transport delay)

@ few embedded sensors

@ measurement dead times

Delays are prejudicial to closed-loop stability and transient performances

Thesis objective

Design real-time control strategies to compensate uncertain and time-varying delays
using a unified methodology.




@ ntroduction : state prediction

@ Adaptive control scheme for uncertain systems with constant input delay
@ Delay-adaptive methodology principle
@ Control strategy with delay update law
@ Case study for a Sl engine : FAR regulation

e Robust compensation of a class of time- and input-dependent input delays
@ Integral transport delay class and application to EGR estimation
@ Sulfficient conditions for transport delay robust compensation

0 Conclusion



@ ntroduction : state prediction



Introduction
Input delay compensation

Dynamics under consideration

X(t) =AX(t) + BU(t— D)

with X € R", U scalar and D > 0 constant.
(A, B) controllable and K € R'" s.t. A+ BK Hurwitz.

Prediction-based control law (Smith,1959)
t
U(t) =KX (t+ D) = K {eADX(t) + | At=9By(s)ds
t-D
achieves exact compensation of the input delay

@ finite spectrum assignment (FSA) (Manitius and Olbrot, 1978)
@ reduction method (Artstein, 1979)

Closed-loop delay compensation

X = (A+BK)X(t) delay-free exponential convergence after D units of time




Introduction

Input delay compensation

lllustrative scalar unstable example
x=x+U(t—D)

with initial conditions x(0) =1 and u(s) =1, s € [-D,0]
Feedback gain chosen as K = —2

15 portionnal controller ortionnal controller
— Prediction-based controller — Prediction-based controller
1
< o3
2 0 < e T
-05 =
-1
0 2 4 6 8 4 6 8 10
Time (s) Time (s)
(@) D=0.05s b)D=05s

Prediction-based control laws

@ Improvement of transient performances

@ Delay-independent behavior as X = (A+ BK)X(t)




Introduction
Time-varying input delay compensation

X(t) = AX+BU(r(t)) with r(t)=t—D(t)

Time-varying state prediction horizon

Exact delay compensation is achieved with
u(t) = kx(r~'(1))

provided that
@ D time-differentiable and uniformly bounded
Q risinvertible (i.e. |D| < 1)

e for a constant delay, D >0, r'(t) =t+D
o rl(t)#t+D(t)



Introduction
Time-varying input delay compensation

X(t) = AX+BU(r(t)) with r(t)=t—D(t)

Time-varying state prediction horizon

Exact delay compensation is achieved with
u(t) = kx(r~'(1))

provided that
@ D time-differentiable and uniformly bounded
Q risinvertible (i.e. |D| < 1)

e for a constant delay, D >0, r'(t) =t+D
@ r'(t) # t+ D(t) : for the control law U(t) = KX(t+ D(t)),

X(t) =AX(t) + BU(t — D(t)) = AX(t) + BKX(t — D(t) + D(t — D(t)))
N

@ requires to predict future values of the delay £0 a priori
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Constant input delay Time-varying input delay
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Introduction

Input delay compensation : open questions

Constant input delay

u(r) = {Aﬂx t)+/ At=9) By(s)ds

Time-varying input delay

u(t) =kX(r='(t)) with r(t)=t—D(t)

@ robustness to delay mismatch ?
@ robustness to plant uncertainties ?
@ disturbance rejection ?

@ output feedback ?

How to design delay-adaptive
prediction-based control tackling these
issues ?

@ the case of unknown delay variations
remains to be addressed

@ extension to input-dependent delay

How to ensure causal robust compensation
for time- and input-varying delays ?




@ Adaptive control scheme for uncertain systems with constant input delay
@ Delay-adaptive methodology principle
@ Control strategy with delay update law
@ Case study for a Sl engine : FAR regulation



Constant delay adaptive scheme
[ le]ele]

Transport PDE and backstepping transformation [Krstic, 2008]

X(t) = AX(t)+BU(t— D)
@ Hyperbolic PDE delay representation

consider the distributed actuator
u(x,t)=U(t+D(x—1)), x € [0;1]

X(t) = AX(t)+Bu(0,1)
Du(x,t) = ux(x,t)
u(1,t = Ut
U(t) U(t—D) X
oo e T ™ X = AX + BU(t— D) |
x — > convection direction
D
1 0

10/45



Constant delay adaptive scheme
[ le]ele]

Transport PDE and backstepping transformation [Krstic, 2008]

X(t) = AX(t)+BU(t— D)

@ Hyperbolic PDE delay representation @ Backstepping transformation :
consider the distributed actuator change of variables (X, u) — (X,w) to
u(x,t)=U(t+D(x—1)), x € [0;1] obtain the target system
X(t) = AX(t)+Bu(0,t) X(t) = (A+BK)X(t)+ Kw(0,t)
Dut(x,t) = ux(x,t) Dwi(x,t) = wx(x,t)
u(1,t = Ut w(l,t) = 0

X
sol. : w(x,t) =u(x,t) — KeAP*X(t) — DK/ PN By(y, t)dy
0

=u(x,t)—KX(t+xD) = u(1,t)=U(t) = KX(t+ D)

10/45



Constant delay adaptive scheme
[ le]ele]

Transport PDE and backstepping transformation [Krstic, 2008]

X(t) = AX(t)+BU(t— D)

@ Hyperbolic PDE delay representation @ Backstepping transformation :
consider the distributed actuator change of variables (X, u) — (X,w) to
u(x,t)=U(t+D(x—1)), x € [0;1] obtain the target system
X(t) = AX(t)+Bu(0,1) X(t) = (A4 BK)X(t)+ Kw(0,t)
Dut(x,t) = ux(x,t) Dwi(x,t) = wx(x,t) (1)
u(1,t = U(t) w(1,t) = 0 (2

sol. : w(x, t) =u(x,t) — Ke"P*X(t) — DK /O " A0 Bu(y, 1)dy
=u(x,t)—KX(t+xD) = u(1,t)=U(t) = KX(t+ D)

(1)=linear parameterization
(2)= Lyapunov-Krasovskii analysis

10/45



Constant delay adaptive scheme
[o] lele]

General prediction-based delay-adaptive scheme

We investigate robust compensation for different versions of the general linear system

X(t) =A(8)X(t) + B(0)[U(t — D) +d]
Y(t) =CX(t)

Calculation of the state
and control references
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[o] lele]

General prediction-based delay-adaptive scheme

We investigate robust compensation for different versions of the general linear system
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Constant delay adaptive scheme
[o] lele]

General prediction-based delay-adaptive scheme

We investigate robust compensation for different versions of the general linear system
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Constant delay adaptive scheme
[o] lele]

General prediction-based delay-adaptive scheme

We investigate robust compensation for different versions of the general linear system
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Constant delay adaptive scheme
[ele] le]

General methodology for Lyapunov analysis

D uncertain — delay estimate b
Implementable control law :

U(t) = KXp(t+ D) # KX(t+ D)

with Xp predicted using estimates

Question
What is the influence of the prediction error on closed-loop stability in case of

@ atime-varying delay update law ? @ an output feedback strategy ?
Xp(t+ D) = X(t+ D(1)) Xp(t+D) = Xg(t+ D)
@ plant parameter uncertainties ? © disturbance rejection ?

Xp(t+ D) = X;(t+ D) Xp(t+ D) = X, (t+D)

12/45



Constant delay adaptive scheme

[e]e]e] ]

General methodology for Lyapunov analysis

Robustness of U(t) = KXp(t + D) AKX (t+ D) ?

Estimation of distributed variables

o(x,t) =U(t+ D(t)(x — 1)) — control synthesis
W(x,t) =0(x, t) — KXp(t+xD(t)) — Lyapunov analysis

with Xp predicted state using erroneous estimates

Error variable PDEs

D()an(x, t) =B (x, ) + D(£)(x — 1) (x, 1)
a1, 1) =U(t)

| A\

 source term
aggregating quantities

D(t)Wi(x, 1) =i (x, 1) + D(t)(x — 1) (x, £) +y(x, 1) 2"SIN9 from the
A estimation errors
w(1,t) =0

A\

Lyapunov-Krasovskii analysis for system state stability analysis

study of delay update law and robustness to other mismatches.

13/45



Constant delay adaptive scheme

00000

Local robust compensation result

Consider the closed-loop system obtained using the control law

u(t) = KX(t+ D(1)) = K [eAf’“)x(t) + /t i@(t) eA(’—S)Bu(s)ds}

with a delay estimate D satisfying one of the following Growth Conditions. Define
2 a2 s 2 r
F(t) =X+ [[u(@) I + 1201 + |8 (01 + (0 - D(1))?
There exist Y* > 0, R > 0 et p > 0 such that, provided ['(0) < p and yp < ¥, then

Vt>0 TI(t)<RI(0)
X(t) N 0 and U(t) = 0

@ stability result, which can be generalized to tracking

(Lyapunov analysis giving conservative expressions of the bounds y* and p)

14/45



Constant delay adaptive scheme
O@0000

Growth conditions for the delay update law

Growth Condition 1 [Estimation improvement]

There exist M > 0 and tp € C°([0, +oo[) s.t.

D(t) =1oProjjp 5y {7o(1)}
Vt>0, tp(t)(D—D(t))>0 and |tp(t) <M

or

Growth Condition 2 [Rate of change compliant with the overall dynamics]

There exist M > 0 and tp € C°([0, +[) s.t.

|D(1)| =YoProi(p ) {To(1)}
[to(0)] <M(X(OR + (D)2 + 18:(5) %)

15/45



Constant delay adaptive scheme
OO0e000

Proof : backstepping transformation and error equations

Backstepping transformation

Mngzauﬁ—x'Jmmxm+bm/w%)¢W@m@¢
t—xD(t

with & satisfying D(£)8¢(x, t) = by (x, £) + D(£) (x — 1) (x, 1)

Cascade ODE-PDE

X(t) =(A+ BK)X(t) + B¥(0,t) + B[u(0,t) — 0(0, 1)]
D(t)iy =iy + D(H)g(x, t) — D(1)ke"PO*Blu(0, t) — (0, 1)]
w(1,t) =0

Asymptotically stable dynamics with additive terms :
@ one coupling term
@ two estimation error terms u(0,t) — (0, t) (b at first order)
e one source term in D with g function of X(t), w(&,t), Wx(&,t) (€ € [0,x])

16/45



Constant delay adaptive scheme
[e]e]e] lelo)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
1
V(1) =X(1)TPX(1) + b1 D / (1) (u(x, 1) — B(x, )2
0

o o N
+b2D(t)/O (1 +x)|7v(x7t)2dx+sz(t)./0 (14 X)W (x, 1)20x + D(t)?



Constant delay adaptive scheme
[e]e]e] lelo)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
1
V(1) =X(1)TPX(1) + b1 D / (14 ) (u(x, 1) — B(x, 1))
0

) ./01(1 X)W (x, )2 +baD(1) ./01(1 X)Wy (x, 1)20x + D(t)?

=J

@ Taking a time-derivative of J and using the error equation gives

dJ/dt :2/01(1 +x) D(t)(x, ) v“v(x,t)dx+f)(t)/01(1 FX)W(x, )20
—_———

=it



Constant delay adaptive scheme
[e]e]e] lelo)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
1
V(1) =X(1)TPX(1) + b1 D / (14 ) (u(x, 1) — B(x, 1))
0

o o N
+b2D(t)./O (1 +X)L7v(x,t)2dx+b2D(t)/O (1 x) i (x, 1)20x + D(1)?

=J

@ Taking a time-derivative of J and using the error equation gives

dJ/dt :2/1(1 ) D)W (x, 1) W(x, t)dx+b(t)/1(1 +X)W(x, t)2ax
0 ——— 0
=Wy+...
B2+ X)W (x, )38~ [ w(t)]|? fzb(t)/()1(1 +x)g(x, t)w(x, t)dx
—2D(1) /0 1 (14 x)Ke*POXBly(0, t) — (0, )] (x, £)dx

+b(t)/()1(1 X)W (x, t)2dx



Constant delay adaptive scheme
[e]e]e] lelo)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
1
V(1) =X(1)TPX(1) + b1 D / (14 ) (u(x, 1) — B(x, 1))
0

) ./01(1 X)W (x, )2 +baD(1) ./01(1 X)Wy (x, 1)20x + D(t)?

=J

@ Taking a time-derivative of J and using the error equation gives

dJ/dt :2/01(1 +x) D(t)(x, ) v“v(x,t)dx+b(t)/01(1 FX)W(x, )20
—_———
=+,

B w(0,t) — (1) - zb(r)/o1 (14 x)g(x, ) (x, t)dx

1 N
—2D(1) /0 (1 4 x)KePOX B[u(0, t) — 8(0, £)]W(x, t)ax

+b(r)/01(1 4 X)W(x, 1)2dx



Constant delay adaptive scheme
[e]e]e]e] o)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
V(1) =X(t)TPX(t) + by D/01(1 +x)(u(x,t) — b(x, 1))2dx
+bob(1) /01 (1 X)W(x, £)2dx + ba D(t) /01 (14 X)W (x, 1)20x + D(t)?
@ With Young’s inequality and the expression of g, one obtains
ot <~(0, 07— |#(1)|> + My D) Vo(t) + M u(0,1) ~ B0, )7

with Vo(t) = [X(8) 2 + [[#(0) |2 + [ ()2

18/45



Constant delay adaptive scheme
[e]e]e]e] o)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
V(t) =X(t)TPX(t) + by D/01(1 +x)(u(x, t) — o(x, t))%dx
+bob(1) /01 (1 X)W(x, £)2dx + ba D(t) /01 (14 X)W (x, 1)20x + D(t)?
@ With Young’s inequality and the expression of g, one obtains
ot <~(0, 07— |#(1)|> + My D) Vo(t) + M u(0,1) ~ B0, )7
with Vo(t) = [X(8)[2 + [[w(0)||? + | #s (1)

@ Acting similarly with other modified £,-norms and judiciously choosing the
intermediate constants by and b, yields either

V(t) <— (M1 —yoM2V(t)) Vo(t) for Growth Condition 1
or V(1) < — (M2 —YpMa V(1)) Vo(t) — (N3 —YpMa) Vo(t)?  for Growth Condition 2

18/45



Constant delay adaptive scheme
[e]e]e]e] o)

Proof : Lyapunov-Krasovskii analysis

@ Consider the candidate functional
V(1) =X(t)TPX(t) + by D/01(1 +x)(u(x,t) — b(x, 1))2dx
+bob(1) /01 (1 X)W(x, £)2dx + ba D(t) /01 (14 X)W (x, 1)20x + D(t)?
@ With Young’s inequality and the expression of g, one obtains
ot <~(0, 07— |#(1)|> + My D) Vo(t) + M u(0,1) ~ B0, )7

. ~ 2 ~ 2
with Vo(t) = [X ()2 + [ ()] + [[dx (1) |

@ Acting similarly with other modified £,-norms and judiciously choosing the
intermediate constants by and b, yields either

V(t) <— (M1 —yoM2V(t)) Vo(t) for Growth Condition 1
or V(1) < — (M2 —YpMa V(1)) Vo(t) — (N3 —YpMa) Vo(t)?  for Growth Condition 2

@ Stability follows by choosing V(0) and yp sufficiently small. Convergence is
obtained by applying Barbalat's Lemma to | X(t)|? and U(t)?

18/45



Constant delay adaptive scheme
[e]e]e]e]e] )

General prediction-based adaptive control strategy

D uncertain — delay estimate D and U(t) = KXp(t+ D(t)) # KX(t+ D)

Question

What is the influence of the prediction error on closed-loop stability in case of

@ atime-varying delay update law ? @ an output feedback strategy ?
@ plant parameter uncertainties ? @ disturbance rejection ?
v
Answer

Robust compensation can be achieved for various combinations of the blocks below

STATE-SPACE SYSTEM

X = AX + BlU(t— D) +d|
Y =cX

or PROCESS

a(s)e

Ds
S VO

Y(s) =

19/45



Constant delay adaptive scheme
@000000

Application to Fuel-to-Air Ratio (FAR) for Sl engines

Stoichiometric blend for S| engines

Ja st

efficiency (%)
100
80

@ Catalyst conversion efficiency optimal at 60
stoichiometry o

20

, I
}

09 09 1 105 1.1 Nommalized

Air/Fuel Ratio

Classical FAR control architecture

@ air path dedicated to the driver
torque request

@ fuel path adjusted (manipulated
variable = injected fuel mass)

Transport delay

o feedback loop using an oxygen
sensor (Lambda sensor)

Lambda.
sensor

20/45



Constant delay adaptive scheme

[e] lelelelele}

Application to Fuel-to-Air Ratio (FAR) for Sl engines

Define the normalized Fuel-to-Air Ratio as follows

_ 1 ms¢
" FARs Magp

Modeling of the composition from the intake chamber to Lambda sensor

and ¢, the exhaust FAR measurement

@ Dilution and transport delay

@ Sensor dynamics

@ Wall-wetting dynamics (indirect injection)
@ input = mjy;, output = ¢y

21/45



Constant delay adaptive scheme
[e]e] lelelele]

Application to Fuel-to-Air Ratio (FAR) for Sl engines

Modeling (cont.)

s
Defining the control variable as U(t) = %Rs m::;"ft), one obtains
asp

TpWOm(t) + (T +7)0m + Om = 6(1) [t(1 —X)U(t— D)+ U(t— D)]

y(t) = 0m
0 = O(Ne, Fair) with Fjr unreliable
D= D(Ne-,Fa/r)

@ an unknown gain 6 € [0.75,1.25], that varies with the operating point (and
extremely slowly over time)

@ an uncertain input time delay, estimated by D = D(Np) in [D, D] = [100,600] ms
@ only one available measurement, ¢,

= combination of block (X) and block (0)



Constant delay adaptive scheme
[e]e]e] lelele]

Application to Fuel-to-Air Ratio (FAR) for Sl engines

Modeling (cont.)

P
1 Mipj

FARs mest (t) , one obtains

Defining the control variable as U(t) =

X(t) = AX(t) + B(9)U(t — D)

Y(t) = CX(t)
0 1 0
A= 1 1 1|, BO)=]| o and C=(1 1(1—X))
ToT Ty T TTo

The reference trajectories are (X", U(8)) = ([0 0]7,0"/8), with

@ an unknown gain 6 € [0.75,1.25], that varies with the operating point (and
extremely slowly over time)

@ an uncertain input time delay, estimated by D = D(Ne) in [D, D] = [100,600] ms
@ only one available measurement, ¢,

= combination of block (X) and block (0)
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Constant delay adaptive scheme
0000e00

Application to Fuel-to-Air Ratio (FAR) for Sl engines

Controller

@ Control law

u(n) =U'(

D>
—
|
X
>
3
+
X
| —
@
>
o
>0
~
—~
=
+
(0]
B3
T
&
Jus}
~
D>
—
|
~
%
N—’
&

@ Observer
X(t) = AX(t) + B(8)0(0. 1) — L(Y(t) — CX(1))
@ Update law (Lyapunov design)
_ | K =x)TP®)

A A 1 R A 0
8(t) =y f—m{(e)/o (1+x)[\7v(x,t)+AD|7VX(x,t)]eADde}( o >

017y

o Backstepping transformation of &(x, t) = ii(x, t) — U"(0)

vxe[0,1], w(x,t)=&(x,t)—D /0 " KeD) B(9)3(y. 1)y — KeADX [X(t) - X]
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FAR, experimental results

Test-bench experiments

@ Experimental setup
o 1.4L four-cylinder Sl engine
@ indirect injection

@ Comparison between

o the proposed prediction-based strategy
o a PID controller

IMEP [bar]

@ Constant feedback gains K, L and update gain Yp

@ Torque variations at constant engine speed Times)

(¢) IMEP [bar]
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FAR, experimental results
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FAR, experimental results
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e Robust compensation of a class of time- and input-dependent input delays
@ Integral transport delay class and application to EGR estimation
@ Sulfficient conditions for transport delay robust compensation
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Transport delay integral model

/t o(s,u(s))ds =1
t—D(1)

with ¢ a strictly positive function of time and of the input

Transport between x = 0 and L with a speed u(t) of a variable &

The solution of the equation &; = u(t)& satisfies
E(L,t) = &(0,t— D(t)) with D(t) defined by

t
/ @ ds=1
t-p(t) _ L
=9(u(s))

\ A

Iy
(=]
)
PA
=
=
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Transport delay integral model

/’iD(r) o(s, u(s))ds =1

with ¢ a strictly positive function of time and of the input

Transport between x = 0 and L with a speed u(t) of a variable &

The solution of the equation &; = u(t)& satisfies
E(L,t) = &(0,t— D(t)) with D(t) defined by

/t @ ds=1
t—p(t) _ L

N~~~ '
=o(u(s)) £(0,t)
@ D> 0, as ¢ positive

\

o
=
=

e D <1 (causal), as ¢ positive and

o o(t u(t))
D(t) =1 o(t— D(t),u(t— D(1))) =1

@ D(t) can be calculated numerically : D~ [} ,¢(.)ds s a class X function
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Example 1 : the bath/shower

Transport delay

Cold water

sensor

Ty

control u(t)

Warm water

Tout = Tmoy(t — D(t)) with
t 1
/ M ds =1 = input-dependent delay
t—D(t) Vp
=0(u(s))
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Example 2 : catalyst internal temperature

T}, T2
@ control = inlet gas temperature
— (and the mass flow rate for hybrid
vehicle)
@ state = (distributed) temperature
L @ residence time
<— From engine exhaust

From a low-frequencies analysis of the PDE thermal model, one can obtain

Tw(L,t) = T4(0,t—D(t))

1+71s
with (kq, k2 > 0 given constants)
ok mg(s) j |
/ ————=ds=1 = time- and input-dependent delay
t-D(t) k2 L
N—_——
=¢(s,u(s))
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Example 3 : exhaust gas recirculation (EGR) for Sl engine

@ state = intake burned gas rate
@ control = reintroduced burned gas mass flow rate

Input delay defined as

L
=0(s.u(s))

t Vgas(S
/ o &() ds=1 = time- and input-dependent delay
t—D(t

Intake Valve

Throttle |4~

FIG.: IFPEn test-bench, 1.8L RSA F5Rt
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Example 4 : EGR for S| engine, practical implementation

Vgas infinite dimensional and not measured

Practical delay calculation by perfect gas law fed by measurements

/iD(t) Voas(s)as = Lp = /ti r;—((ss)) [Fair(s) + Fegr(s)]ds = Vp

‘ | EGR LP Valve

@ 1 — 2:homogeneous temperature and " |
pressure (measured) QED_H \4\ S @
A Intake Valve Exhaust Valve
@ 2 — 3 : homogeneous pressure and linear e O) “‘@m g R Y VA Turboch

temperature profile
@ 3 — 4 :intake manifold temperature

(measﬁred) “ DT
) b

three delays calculated sequentially by direct iterations
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Example 4 : EGR for S| engine, practical implementation

Intake burned gas rate model

Define xj, the low-pressure burned gas rate

Xpp =01 [—(Fegr(t) + Fair(t))Xjp(t) + Fegr(t)]
x(t) =xp(t — D(t))

with D(t) the transport delay defined earlier and o a known constant (ambiant

conditions)
.
Open-loop burned gas rate estimate X
aspirated mass flow rate model
measurement of the low-pressure fresh air mass flow rate = Xpp

~

delay calculated by the previous methodology = X

A\
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Example 4 : EGR for S| engine, practical implementation

Experimental set-up

@ 1.8L four cylinder turbocharged Sl engine
@ no real-time intake burned gas rate measurement — use of Lambda sensor

@ indirect validation methodology through estimation-based feedforward strategy
on the FAR
Minj = FARsmES! = FARg(1 — X)Masp

FAR staying close to 1 <—— accurate estimate

Experimental results for a given operating point (Ne = 2000 rpm and /IMEP = 8 bar)

EGR Valve Position [%]
Normalized FAR [-]

= = = With Undelayed Correction
——— With Correction

= = = Without Correction
20 ———With Correction ]

0 2 a 6 8 10 12 14 16 o 2 a 6 8 10 12 14 16
Time [s] Time [s]
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A general problem statement

Problem
To design a prediction-based control law for the (potentially unstable) plant

Xt a, x4 4 agx = bou(t— D(1t))

t
/ u(s)ds=1 with u>u>0
t—D(1)
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A general problem statement

Problem
To design a prediction-based control law for the (potentially unstable) plant

Xt a, x4 4 agx = bou(t— D(1t))

t
/ u(s)ds=1 with u>u>0
t—D(1)

The control law
u(t) = KX(r '(t)) with r(t)=t—D(t)

achieves exact delay compensation but results into an implicit loop.

‘ u(t) function of D(t) ‘

‘ D(t) function of u(t) ‘
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A general problem statement

Problem

To design a prediction-based control law for the (potentially unstable) plant
x4 a,  x(D 4 agx = bou(t— D(1))

t
/ u(s)ds=1 with u>u>0
t—D(1)

Control : u(t) = KX(t+D(t)) # KX(r~'(1))

State-space representation : assume that X is fully known

0 1 0 0

A= . B=
0 0 1 0
—ap —ai —an—1 bo

Under which conditions is the control law u(t) = KX(t+ D(t)) stabilizing ?
(without exact delay compensation)

35/45



Transport delay robust compensation
0®@0000000

Methodology

Under which conditions is the control law u(t) = KX (t+ D(t)) stabilizing ?

1st step : find a condition on the delay variations D(t)

Lyapunov-Krasovskii analysis (backstepping)

2nd step : relate delay variations to the input and study the input dynamics

DDE stability results (Halanay)
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1st step : find a condition on the delay variations D(t)

Robust compensation of a time-varying delay

Consider the closed-loop system

X(t) =AX(t)+ BU(t— D(t))

t
U(t) =U"— KX" + K {eAD(t)X(t) + / eAlt=s) BU(s)ds]
t-D(1)

with U scalar, K s.t. A+ BK Hurwitz and (X", U") an equilibrium point.
D:Ry — [0, D] is assumed to be time-differentiable.

There exists 8* €]0,1[ such that, provided V¢ > 0,|D(t)| < &%, then (1) exponentially
converges to X".
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1st step : find a condition on the delay variations D(t)

Robust compensation of a time-varying delay

Consider the closed-loop system

X(t) =AX(t)+BU(t— D(t))

t
U(t) =U"— KX" + K {eAD(')X(t) + / eAt=s) BU(S)dS]
t—D(t)

with U scalar, K s.t. A+ BK Hurwitz and (X", U") an equilibrium point.
D: R, — [0, D] is assumed to be time-differentiable.

There exists 8* €]0, 1] such that, provided V¢ > 0, |D(t)| < 8", then (1) exponentially
converges to X".

x(t) =Ax(t)+ Bu(t— D(t))
=Ax(t)+ BKx(t— D(t) + D(t — D(t)))
N

~0 if | D| small
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Methodology

Under which conditions is the control law u(t) = KX (t+ D(t)) stabilizing ?

1st step : find a condition on the delay variations D(t)

Lyapunov-Krasovskii analysis (backstepping)

Solved : get |D(t)| < 8, t>0

2nd step : relate delay variations to the input and study the input dynamics

DDE stability results (Halanay)
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2nd step : relate delay variations to the input and study the input dynamics

implies

u(t—D(t)) () —e(t—D(t))
ulty u(t)

D(t) =1—

Sufficient condition for |D(t)] < &*

*

ud

max |&¢| <

with €(t) = u(t) — u" the error variable and &; : s € [—D,0] — &(t+ s)

Problem reformulation

To guarantee the condition
ud*

2

max|g;| < 8=
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2nd step : relate delay variations to the input and study the input dynamics

We use the following stability result.

Halanay (local)

Let x be a solution of the n order DDE

{x(”) +ot x4 agx = cZ(t,x,,...xt("q)), t>1

Xy =W E CO([_570]7Q)

where the left-hand side of the differential equation defines a polynomial which roots
have only strictly negative real parts, ¢ > 0, ¢ is a continuous functional and Q2 is a
neighborhood of the origin in which ¢ satisfies the sup-norm relation

Vt>to, [e(t .. x" V)| < max|Xi| @)

with X =[x ... x{"=1)]7. Then, there exists Cyax > 0 such that, for any
0 < ¢ < Cmax, there exists Y > 0 and r > 0 such that

V>0, [X(1)] < rmax|X,|e V(=)
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2nd step : relate delay variations to the input and study the input dynamics

The error variable € = u— u" with u defined through a prediction on the horizon D(t)
satisfies the differential equation

&M 4 (ap_1 + bokn_ 1) + ..+ (a0 + boko)e =To(er,.... &™)
+m (e,,...,ef"_1))

where [—kg ... — kn—1] Sk and Tp and 71 are polynomial functions s.t.
@ there exists a class % function B such that
mo(er,...,e" ) < B(IK|) max | | with E() = [e(t) &(t) ... e ()T

@ T4 is at least quadratic in €, .. . ,85"71)

We apply the previous result X = E, £ = my + 1. To guarantee the property (2),
@ we decrease the gain magnitude |K| < k* such that |1to| < (1 — €)Cmax max | E|
@ we decrease the open set Q2 such that |Tt1| < €Cmax max |E¢|

then £ < cmax max | E;| and one can apply Halanay, to guarantee the exponential
convergence of €
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Transport delay robust compensation

Local small gain condition
Consider the closed-loop system

t
X 4 an x4 4 agx = bou(t—D()) with /FD(t)u(s)ds:1

t
D=u +K AD(t)Xt
u(t) =+ [e O+

Consider the functional ©(t) = | X(t) — X"| + max \U( ) — U] and Q a symmetric
[ —
positive definite matrix. Assume that, for a given € € (O 1), there exists k* > 0's. t.
7»( MQ)
2A(P)?
for any Ko € R'" such that |Kp| < k*, with B defined in terms of by A and B. Then,
there exists © : R +— R such that for any K € R'*" such that |K| < k* and
©(0) < 6(|K|) the considered condition is fulfilled and the plant exponentially
converges to X".

Alt=3) Bo(s)dls — x’}

B(|Ko|) <(1—e)===—"+ with P(A+BKy)+(A+BKo) P=-Q
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Methodology

Under which conditions is the control law u(t) = KX(t+ D(t)) stabilizing ?

1st step : find a condition on the delay variations D(t)

Lyapunov-Krasovskii analysis (backstepping)

Solved : get |D(t)| < 8, t>0

2nd step : relate delay variations to the input and study the input dynamics

DDE stability results (Halanay)

Solved : independent n order scalar delay equation

Small gain condition I
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Conclusion

Conclusion

Scope of the thesis
Focus on the design of robust compensation for uncertain and time-varying delays

Constant input delay Time-varying input-delay

How to design delay-adaptive How to ensure causal robust compensation
prediction-based control ? for time- and input-varying delays ?
v v
Proposed general adaptive scheme Proposed robust compensation method
@ based on a delay transport PDE @ prediction over a time horizon equal to
representation and a backstepping the delay
transformation @ two-steps methodology for
@ versatile control strategy input-dependent delay, based on
o illustrated experimentally on FAR Halanay DDE stability results
regulation @ focus on integral transport delay

model (experimentally tested for EGR)

@ small gain condition (detuning,
robustness filter)

\
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