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Abstract— In a recent paper we presented the first adaptive
control design for an ODE system with a possibly large actuator
delay of unknown length. We achieved global stability under
full state feedback. In this paper we generalize the design to
the situation where, besides the unknown delay value, the ODE
also has unknown parameters, and where trajectory tracking
(rather than equilibrium regulation) is pursued.

I. INTRODUCTION

Until recently, the only results on adaptive control of
systems with actuator delays dealt only with uncertain pa-
rameters in the ODE part of the system [4], [16], [17] but
not with uncertainty in the delay value itself. The importance
of designing adaptive controllers for unknown delay was
recognized in [3], [9], however only approximation-based
ideas for limited classes of plants were dealt with.

In a recent paper [2] we presented the first results on delay-
adaptive control for a general class of plants, under full state
feedback. This result is global—including being global in the
initial delay value estimate (one can arbitrarily underestimate
or overestimate the delay value initially, and still achieve
stabilization adaptively).

However, the result in [2] contains two limitations, one
made for pedagogical reasons and the other which is funda-
mental. The limitation for which the reason is pedagogical
is in assuming that there are no unknown parameters in the
ODE. This limitation is being removed by this paper. This
limitation was imposed in [2] to prevent the novel ideas on
how to develop global adaptivity in the infinite-dimensional
(delay) context from being buried under standard but never-
theless complicated details of ODE adaptive control.

The other limitation in [2], which is fundamental, is in
assuming that the full actuator state is measured, though the
delay value is completely unknown. The physical meaning
of this is that the actuator delay is modeled as a transport
process, to which the control designer has physical access for
measurement but the speed of propagation of this transport
process is completely unknown. As we explain in [2], the
problem where the actuator state is not measurable and
the delay value is unknown is not solvable globally, since
the problem is not linearly parametrized. We show in [2]
how one can solve it locally, however, this is not a very
satisfactory result, since it is local both in the initial state and
in the initial parameter error. In other words, the initial delay
estimate needs to be sufficiently close to the true delay. (The
delay can be long, but it needs to be known quite closely.)
Under such an assumption, one might as well use a linear
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controller and rely on robustness of the feedback law to small
errors in the assumed delay value.

So, for this reason, in this paper we continue with a full-
state feedback design, specifically assuming the measurement
of the actuator state. In [2] we discussed all the possible
problems that one can consider with respect to the availabil-
ity or unavailability of measurement of the ODE state, the
actuator state, the knowledge (or lack of knowledge) of the
delay value, and the knowledge (or lack thereof) of the ODE
parameters. There is a total number of 14 distinct problem
combinations. Here we focus on the most interesting one of
them, with both the ODE parameters and the delay value
unknown, but with full state measurement. An extension to
the case where only an output (and not the complete state)
of the ODE is available for measurement is easy (with the
method of backstepping and Kreisselmeier observers). We
don’t pursue it here for consistency of concepts—since we
must measure the actuator state, we might as well present a
result with full measurement of the ODE state.

As in most of the research on control of unstable plants
with a long actuator delay [1], [4], [5], [6], [7], [8], [11],
[13], [14], [15], [16], [18], [19], [20], [21], the essence of our
approach is “predictor feedback,” which we recently showed
in [8], [11] to be a form of backstepping boundary control
for PDEs [12] and extended to nonlinear plants [7].

In this paper we generalize the design from [2] in two
major ways: we extend it to ODEs with unknown parameters
and extend it from equilibrium regulation to trajectory track-
ing. A significant number of new technical issues arise in
this problem. The estimation error of the ODE parameters ap-
pears in the error models of both the ODE and of the infinite-
dimensional (delay) subsystem, which is reflected also in the
update law. The update law has to also deal appropriately
with ensuring stabilizability with the parameter estimates,
for which projection is employed. Finally, our approach for
dealing with delay adaptation involves normalized Lyapunov-
based tuning, a rather non-standard approach as compared
to finite-dimensional adaptive control. In this framework, we
need to bound numerous terms involving parameter adapta-
tion rates (both for the delay and for the ODE parameters)
in the Lyapunov analysis. Some of these terms are vanishing
(when the tracking error is zero), while the others (which
are due to the reference trajectory) are non-vanishing. These
terms receive different treatment though both are bounded by
normalization and their size is controlled with the adaptation
gain.

We begin in Section II by defining the problem and present
the adaptive control design and the main stability theorem
in Section III. Simulations results are shown in Section IV,
followed by the stability proof in Section V.
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II. PROBLEM FORMULATION

We consider the following system

Ẋ(t) = A(θ )X(t)+ B(θ )U(t−D) (1)

Y (t) = CX(t) , (2)

where X ∈ R
n is the ODE state, U is the scalar input to

the entire system, D > 0 is an unknown constant delay, the
system matrix A(θ ) and the input vector B(θ ) in (1) are
linearly parametrized, i.e.,

A(θ ) = A0 +
p

∑
i=1

θiAi (3)

B(θ ) = B0 +
p

∑
i=1

θiBi , (4)

and θ is an unknown but constant parameter vector that
belongs to the following convex set

Π = {θ ∈ R
p|P(θ ) ≤ 0} , (5)

where, by assuming that the convex function P : R
p → R is

smooth, we assure that the boundary ∂Π of Π is smooth.

Assumption 1: The set Π is bounded and known. A con-
stant D̄ is known such that D ∈]0;D̄].

Assumption 2: The pair (A(θ ),B(θ )) is completely con-
trollable for each θ and there exists a triple of vector/matrix-
valued functions (K(θ ),P(θ ),Q(θ )) such that (K,P) ∈
C1(Π)2, Q∈C0(Π), the matrices P(θ ) and Q(θ ) are positive
definite and symmetric, and the following Lyapunov equation
is satisfied for all θ ∈ Π:

P(θ )(A + BK)(θ )+ (A + BK)(θ )TP(θ ) = −Q(θ ) . (6)

Example 1: Consider the potentially unstable plant

Ẋ1(t) = θX1(t)+ X2(t) (7)

Ẋ2(t) = U(t −D) (8)

Y (t) = X1(t) , (9)

where we assume Π = [−θ ; θ̄ ] and define

A(θ ) = A0 + θA1 =

(

0 1
0 0

)

+ θ

(

1 0
0 0

)

(10)

B = B0 =

(

0
1

)

. (11)

Using the backstepping method we construct (K,P,Q) as

K(θ ) = −
(

1 +(θ + 1)2 θ + 2
)

(12)

P(θ ) =
1

2
Q(θ ) =

(

1 +(1 + θ )2 1 + θ
1 + θ 1

)

, (13)

which satisfies the Lyapunov equation (6).

Assumption 3: The quantities

λ = inf
θ∈Π

min{λmin(P(θ )),λmin(Q(θ ))} (14)

λ̄ = inf
θ∈Π

λmax(P(θ )) . (15)

exist and are known.

Example 2: (Example 1 continued) One can show that

λmax(P(θ )) =
2 +(θ + 1)2 + |θ + 1|

√

(θ + 1)2 + 1

2
(16)

λmin(P(θ )) =
1

λmaxP(θ )
, (17)

from which λ and λ̄ area readily obtained over the set Π =
[−θ ; θ̄ ].

Assumption 4: For a given smooth function Y r(t), there
exist known functions X r(t,θ ) and U r(t,θ ), which are
bounded in t and continuously differentiable in the unknown
argument θ on Π, and which satisfy

Ẋ r(t,θ ) = A(θ )X r(t,θ )+ B(θ )U r(t,θ ) (18)

Y r(t) = CX r(t) . (19)
Example 3: (Example 2 continued) Take Y r(t) = sin(t).

Then, the reference trajectory pair for the state and input is

X r(t,θ ) =

(

sin(t)
cos(t)−θ sin(t)

)

(20)

U r(t,θ ) = −sin(t + D)−θcos(t + D) , (21)

bounded in t and continuously differentiable in θ .

III. CONTROL DESIGN

We first represent the plant as

Ẋ(t) = A(θ )X(t)+ B(θ )u(0,t) (22)

Y (t) = CX(t) (23)

Dut(x,t) = ux(x,t) (24)

u(1,t) = U(t) , (25)

where the delay is represented as a transport PDE and
u(x,t) = U(t +D(x−1)). We consider reference trajectories
X r(t) and U r(t), such as described in Assumption 4. Let us
introduce the following error variables

X̃(t) = X(t)−X r(t, θ̂ ) (26)

Ũ(t) = U(t)−U r(t, θ̂ ) (27)

e(x,t) = u(x,t)−ur(x,t, θ̂ ) , (28)

with an estimate θ̂ of the unknown θ . When D and θ are
known, one can show that the control law

U(t) = U r(t)−KX r(t + D)

+K

[

eADX(t)+ D

∫ 1

0
eAD(1−y)Bu(y,t)dy

]

(29)

achieves exponential stability of the equilibrium (X̃ ,e) = 0,
compensating the effects of the delay D.

When D and θ are unknown, we employ the control law

U(t) = U r(t, θ̂ )−K(θ̂)X r(t + D̂, θ̂ )+ K(θ̂)
[

eA(θ̂)D̂(t)

×X(t)+ D̂(t)
∫ 1

0
eA(θ̂)D̂(t)(1−y)B(θ̂ )u(y,t)dy

]

,(30)

based on the certainty equivalence principle. The update laws
for the estimates D̂ and θ̂ are chosen based on the Lyapunov
analysis (presented in Section V) as

˙̂D(t) = γ1Proj[0,D̄]{τD(t)} (31)

˙̂θ (t) = γ2ProjΠ{τθ (t)} , (32)
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with adaptation gains γ1 and γ2 chosen as positive and

τD(t) = −

∫ 1
0 (1 + x)w(x,t)K(θ̂)eA(θ̂)D̂(t)xdx

1 + X̃(t)T P(θ̂ )X̃(t)+ b
∫ 1

0 (1 + x)w(x,t)2dx

×
(

(A + BK)(θ̂)X̃(t)+ B(θ̂)w(0,t)
)

(33)

τθ (t) =
2X̃(t)T P(θ̂)

b
−
∫ 1

0 (1 + x)w(x,t)K(θ̂)eA(θ̂)D̂(t)xdx

1 + X̃(t)T P(θ̂ )X̃(t)+ b
∫ 1

0 (1 + x)w(x,t)2dx

×(AiX(t)+ Biu(0,t))1≤i≤p . (34)

The matrix P is defined in Assumption 2, the standard
projector operators are given by

Proj[0,D̄]{τD} = τD







0, D̂ = 0 and τD < 0

0, D̂ = D̄ and τD > 0
1, else

(35)

ProjΠ{τθ}= τθ











1, θ̂ ∈ Π̊ or ∇θ̂ PT τ ≤ 0

I−
∇θ̂ P∇θ PT

∇θ̂ PT ∇θ P
, θ̂ ∈ ∂Π and ∇θ̂ PT τ > 0 .

(36)
The transformed state of the actuator is

w(x,t) = e(x,t)− D̂(t)

∫ x

0
K(θ̂ )eA(θ̂)D̂(t)(x−y)B(θ̂)

×e(y,t)dy−K(θ̂)eA(θ̂)D̂(t)xX̃(t) (37)

and the constant b is chosen such as

b ≥ 4 sup
θ̂∈Π

|PB|2(θ̂ )
D̄

λ
. (38)

Theorem 1: Let Assumptions 1–4 hold and consider the
closed-loop system consisting of (22)–(25), the control law
(30) and the update laws defined by (31)–(38). There exists
γ∗ > 0 such that for any γ ∈ [0,γ∗[, there exist positive
constants R and ρ (independent of the initial conditions) such
that, for all initial conditions satisfying (X0,u0,D̂0,θ 0) ∈
R

n ×L2(0,1)×]0,D̄]×Π, the following holds:

ϒ(t) ≤ R
(

eρϒ(0)−1
)

, ∀t ≥ 0 , (39)

where

ϒ(t) = |X̃(t)|2 +
∫ 1

0
e(x,t)2dx + D̃(t)2 + θ̃(t)T θ̃ (t) . (40)

Furthermore, asymptotic tracking is achieved, i.e.,

lim
t→∞

X̃(t) = 0 , lim
t→∞

Ũ(t) = 0 . (41)

IV. SIMULATIONS

We return to the system from Examples 1–3. We focus on
the issues arising from the large uncertainties in D and θ and
from the tracking problem with the reference trajectory (20)–
(21). We take D = 1, θ = 0.5, D̄ = 2D = 2, θ = 0, θ̄ = 2θ = 1.
We pick the adaptations gains as γ1 = 10, γ2 = 2.3 and the

normalization coefficient as b = 4|̄PB|2D̄

λ = 3200. We show

simulation results for X1(0) = X2(0) = 0.5, θ̂ (0) = 0, and
two different values of D̂(0). In Figures 1 and 2, the tracking
of X r(t) is achieved for both simulations, as Theorem 1
predicts. In 2 we observe that θ̂ (t) converges to the true
θ , whereas this is not the case with D̂(t). This is consistent
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Fig. 1. The system respons of the system (1)–(2) with the reference
trajectory (20)–(21) for D = 1, θ = 0.5, θ̂ (0) = 0 and D̂(0) = 0.

with the theory. By examining the error systems (43), (44),
with the help of persistency of excitation, we could infer the
convergence of θ̂ (t) but not of D̂(t).

V. PROOF OF THE MAIN RESULT

In this section, we prove Theorem 1. We start by consid-
ering the transformation (37) along with its inverse

e(x,t) = w(x,t)+ D̂(t)

∫ x

0
K(θ̂ )e(A+BK)(θ̂)D̂(t)(x−y)B(θ̂ )

×w(y,t)dy + K(θ̂)e(A+BK)(θ̂)D̂(t)xX̃(t) . (42)

Using these transformations and the models (1) and (18), the
transformed system is written as

˙̃X(t) = (A + BK)(θ̂)X̃(t)+ B(θ̂)w(0,t)+ A(θ̃)X(t)

+B(θ̃)u(0,t)−
∂X r

∂ θ̂
(t, θ̂ ) ˙̂θ (t) (43)

Dwt (x,t) = wx(x,t)− D̃(t)p0(x,t)−D ˙̂D(t)q0(x,t)

−Dθ̃(t)T p(x,t)−D
˙̂θ (t)T q(x,t) (44)
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Fig. 2. The system response of the system (1)–(2) with the reference
trajectory (20)–(21) for D = 1, θ = 0.5, θ̂ (0) = 0 and two dramatically
different initial conditions for D̂: D̂(0) = 0 and D̂(0) = D̄ = 2D = 2. Note that
the solid plots in this figure correspond to the same simulation in Figure 1.

w(1,t) = 0 , (45)

where D̃(t) = D− D̂(t) is the estimation error of the delay,
the quantities A(θ̃ ) = ∑

p
i=1 θ̃iAi = ∑

p
i=1(θi − θ̂i(t))Ai,B(θ̃ ) =

∑
p
i=1 θ̃iBi are linear in the parameter error θ̃(t) = θ − θ̂(t),

p0(x,t) = K(θ̂ )eA(θ̂)D̂(t)x((A + BK)(θ̂)X̃(t)

+B(θ̂ )w(0,t)) (46)

q0(x,t) =

∫ x

0
K(θ̂ )

(

I + A(θ̂)D̂(t)(x− y)
)

eA(θ̂)D̂(t)(x−y)

×B(θ̂ )e(y,t)dy + KA(θ̂)xeA(θ̂)D̂(t)xX̃(t) (47)

and the vector-valued functions q(x,t) and p(x,t) are defined
through their coefficients as follows, for 1 ≤ i ≤ p,

pi(x,t) = K(θ̂ )eA(θ̂)D̂(t)x(AiX(t)+ Biu(0,t)) (48)

= K(θ̂ )eA(θ̂)D̂(t)x((Ai + BiK(θ̂ ))X̃(t)+ Biw(0,t)

+AiX
r(t, θ̂ )+ Biu

r(0,t, θ̂)) (49)

qi(x,t) = D̂(t)
∫ x

0

([

∂K

∂ θ̂i

(θ̂ )+ K(θ̂)AiD̂(t)(x− y)

]

×eA(θ̂)D̂(t)(x−y)B(θ̂ )+ K(θ̂)eA(θ̂)D̂(t)(x−y)Bi

)

×e(y,t)dy +

(

∂K

∂ θ̂i

+ K(θ̂)AiD̂(t)x

)

×eA(θ̂)D̂(t)xX̃(t)−K(θ̂)eA(θ̂)D̂(t)x ∂X r

∂ θ̂i

(t, θ̂ )

+
∂ur

∂ θ̂i

(x,t, θ̂ )− D̂(t)

∫ x

0
K(θ̂ )

×eA(θ̂)D̂(t)(x−y)B(θ̂)
∂ur

∂ θ̂i

(y,t, θ̂ )dy (50)

Now, we define the following Lyapunov function

V (t) = Dlog(N(t))+
b

γ1
D̃(t)2 +

bD

γ2
θ̃ (t)T θ̃ (t) , (51)

where

N(t) = 1 + X̃(t)T P(θ̂ )X̃(t)+ b

∫ 1

0
(1 + x)w(x,t)2dx . (52)

Taking a time derivative of V (t), we obtain

V̇ (t) = −
2b

γ1
D̃(t)( ˙̂D(t)− γ1τD(t))

−
2bD

γ2
θ̃ (t)T ( ˙̂θ (t)− γ2τθ (t))

+
D

N(t)

(

p

∑
i=1

˙̂θi(t)

(

X̃(t)T ∂P

∂ θ̂i

(θ̂ )X̃(t)

−X̃(t)T P(θ̂ )
∂X r

∂ θ̂i

(t, θ̂ )

)

− X̃(t)T Q(θ̂ )X̃(t)

+2X̃(t)T PB(θ̂)w(0,t)−
b

D
‖w‖2 −

b

D
w(0,t)2

−2b ˙̂D(t)

∫ 1

0
(1 + x)w(x,t)q0(x,t)dx

−2b
˙̂θ (t)T

∫ 1

0
(1 + x)w(x,t)q(x,t)dx

)

, (53)

where we have used an integration by parts. Using the
assumptions that D̂(0)∈]0;D̄] and θ̂(0)∈ Π, the update laws
(31)–(32) with the properties of the projection operator, while
substituting the expressions of (31)–(32) and using (38) with
the Young inequality, we obtain

V̇ (t) ≤ −
D

2N(t)

(

λmin(Q)|X̃ |2 +
b

D
‖w‖2 + 2

b

D
w(0,t)2

)

+2Dbγ1

∫ 1
0 (1 + x)|w(x,t)||p0(x,t)|dx

N(t)

×

∫ 1
0 (1 + x)|w(x)||q0(x,t)|dx

N(t)

+Dγ2

p

∑
i=1

(

∫ 1
0 (1 + x)|w(x,t)||pi(x,t)|dx

N(t)

+
2|X̃(t)T P(θ̂ )/b||AiX(t)+ Biu(0,t)|

N(t)

)

1

N(t)

×

(

|X̃(t)T ∂P

∂ θ̂i

(θ̂ )X̃(t)|+ |X̃(t)T P(θ̂ )
∂X r

∂ θ̂i

(t, θ̂ )|
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+2b

∫ 1

0
(1 + x)|w(x,t)||qi(x,t)|dx

)

. (54)

Fuhermore, each signal depending on θ̂ , namely A,B,K,P,
∂P/∂ θ̂i,∂X r/∂ θ̂i and ∂ur/∂ θ̂i, is given as continuous in

θ̂ . Since θ̂ remains in Π, a closed and bounded subset
of R

p, each signal is bounded in terms of θ̂ and admits
a finite upper bound. We denote MA = supθ̂∈Π |A(θ̂ )| and
define MP,MB,MK ,MA+BK ,M∂K/∂ θ̂ . Therefore, substituting

the expression of e(x,t) in (47) and (50) with the inverse
transformation (42), we obtain using Cauchy-Schwartz and
Young inequalities, along with (46)–(47) first, (48)–(50) then,
∫ 1

0
(1 + x)|w(x,t)||p0(x,t)|dx

≤ M0(|X̃(t)|2 +‖w(t)‖2 + w(0,t)2) (55)
∫ 1

0
(1 + x)|w(x,t)||q0(x,t)|dx ≤ M0(|X̃(t)|2 +‖w(t)‖2)

(56)
(

∫ 1

0
(1 + x)|w(x,t)||pi(x,t)|dx + 2|X̃(t)T P(θ̂ )/b|

× |AiX(t)+ Biu(0,t)|

)

≤ Mi(|X̃(t)|2 +‖w(t)‖2 + w(0,t)2 +‖w(t)‖) (57)
∫ 1

0
(1 + x)|w(x,t)||qi(x,t)|dx

≤ Mi(|X̃(t)|2 +‖w(t)‖2 +‖w(t)‖) , (58)

where M0 and Mi (1 ≤ i ≤ p) are sufficiently large constants
given by

M0 = MK max{MA+BK + MA,2MK((1 + MAD̄)

×(MB + MBMK(1 + D̄))+ MA)}e(MA+MA+BK )D̄(59)

Mi = max{|Ai|+ |Bi|MK + |Bi|+ 2MP/b,

2 sup
(t,θ̂)∈R×Π

(|Ai||X
r(t, θ̂ )|+ |Bi||u

r(0,t, θ̂ )|),

2MK sup
(t,θ̂ )∈R×Π

∣

∣

∣

∣

∂X r

∂ θ̂
(t, θ̂ )

∣

∣

∣

∣

+2 sup
(t,θ̂)∈R×Π

∣

∣

∣

∣

∂ur

∂ θ̂
(t, θ̂ )

∣

∣

∣

∣

(1 + D̂MKMB),

((

M∂K/∂ θ̂ + MK|Ai|D̄
)

MB + |Ai|MK

)

×(2D̄+ 2D̄MKMB + MK)}e(MA+MA+BK )D̄ . (60)

Consequently, if we define

M′
P = max

1≤i≤p
sup
θ̂∈Π

∣

∣

∣

∣

∣

∂P(θ̂ )

∂ θ̂i

∣

∣

∣

∣

∣

(61)

Mr = max
1≤i≤p

sup
θ̂∈Π,t≥0

∣

∣

∣

∣

∣

∂X r(t, θ̂ )

∂ θ̂i

∣

∣

∣

∣

∣

, (62)

using (55)–(58) in (54), we obtain

V̇ (t) ≤ −
D

2N(t)

(

λmin(Q)|X̃ |2 +
b

D
‖w‖2 + 2

b

D
w(0,t)2

)

+2Dbγ1M2
0

|X̃(t)|2 +‖w(t)‖2 + w(0,t)2

N(t)

×
|X̃(t)|2 +‖w(t)‖2

N(t)

+Dγ2

p

∑
i=1

Mi
|X̃(t)|2 +‖w(t)‖2 + w(0,t)2 +‖w(t)‖

N(t)

×

(

M′
P|X̃(t)|2 + Mr|P̄||X̃(t)|

N(t)

+2bMi
|X̃(t)|2 +‖w(t)‖2 +‖w(t)‖

N(t)

)

. (63)

Bounding the cubic and quadric terms with the help of N(t),
we arrive at

V̇ (t) ≤ −
D

2N(t)

(

λ |X̃(t)|2 +
b

D
‖w(t)‖2 + 2

b

D
w(0,t)2

)

+
2Dbγ1M2

0

min{λ ,b}

|X̃(t)|2 +‖w(t)‖2 + w(0,t)2

N(t)

+Dγ2

p

∑
i=1

Mi

(

M′
P(

1

λ
+

1

2min{1,b}
)

+MPMr(
1

2
+

1

2min{1,λ}
)

+2bMi(
1

min{λ ,b}
+

1

2min{1,b}
+ 1)

)

×
|X̃(t)|2 +‖w(t)‖2 + w(0,t)2

N(t)
. (64)

Defining the following constants,

m =
2max

{

bM2
0 ,∑

p
i=1 Mi(M

′
P + MPMr + 3bMi)

}

min{1,λ ,b}
(65)

γ∗ =
min{λ ,b/D}

4bm
(66)

we finally obtain

V̇ (t) ≤ −
D

2N(t)

(

min

{

λ ,
b

D

}

−2(γ1 + γ2)m

)

×(|X̃(t)|2 +‖w(t)‖2 + w(0,t)2) . (67)

Consequently, by choosing (γ1,γ2) ∈ [0;γ∗[2, we make V̇ (t)
negative semidefinite and hence

V (t) ≤V (0), ∀t ≥ 0 . (68)

Starting from this result, we now prove the results stated
in Theorem 1. From the transformation (37) and its inverse
(42), we obtain these two inequalities

‖w(t)‖2 ≤ r1‖e(t)‖2 + r2|X̃(t)|2 (69)

‖e(t)‖2 ≤ s1‖w(t)‖2 + s2|X̃(t)|2 , (70)

where r1,r2,s1,s2 are sufficiently large positive constants
given by

r1 = 3
(

1 + D̄2M2
Ke2MA+BK D̄M2

B

)

(71)

r2 = 3M2
Ke2MA+BK D̄ (72)

s1 = 3
(

1 + D̄2M2
Ke2MAD̄M2

B

)

(73)

s2 = 3M2
Ke2MAD̄ . (74)
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Furthermore, from (51) and (70), it follows that

D̃(t)2 + θ̃(t)T θ̃(t) ≤
γ1 + γ2

b
V (t) (75)

‖X̃(t)‖2 ≤
1

λ
(eV (t)/D −1) (76)

‖e(t)‖ ≤
s1

b
(eV (t)/D −1)+ s2‖X̃(t)‖ .(77)

Thus, from the definition of ϒ(t), it is easy to show that

ϒ(t) ≤

(

1 + s2

λ
+

s1

b
+

(γ1 + γ2)D

b

)

(eV (t)/D −1) (78)

Besides, using (69), we also obtain

V (0) ≤

(

D(λ̄ + s2b + 2s1b)+ b

(

1

γ1
+

1

γ2

))

ϒ(0) . (79)

Finally, if we define

R =
1 + s2

λ
+

s1

b
+

(γ1 + γ2)D

b
(80)

ρ = λ̄ + s2b + 2s1b +
b

D

(

1

γ1
+

1

γ2

)

, (81)

we obtain the global stability result given in Theorem 1.
We now prove tracking. From (68), we obtain the uniform

boudedness of ‖X̃(t)‖, ‖w(t)‖, D̂(t) and ‖θ̂(t)‖. From (42),
we obtain that ‖e(t)‖ is also uniformly bounded in time.
From (30), we get the uniformly boudedness of U(t) and
consequently of Ũ(t) for t ≥ 0. Thus, we get that u(0,t)
and e(0,t) are uniformly bounded for t ≥ D. Besides, from

(32) and (48), we obtain the uniform boundedness of ‖ ˙̂θ (t)‖
for t ≥ D. Finally, with (43), we obtain that dX̃(t)2/dt is
uniformly bounded for t ≥ D. As |X̃(t)| is square integrable,
from (67), we conclude from Barbalat’s Lemma that X̃(t)→
0 when t → ∞.

Besides, from (67), we get the square integrability of
‖w(t)‖. From (70), we obtain the square integrability of
‖e(t)‖. Consequently, with (30), we obtain the square in-
tegrability of Ũ(t). Furthermore,

dŨ(t)2

dt
= 2Ũ(t)

(

K(θ̂ )eA(θ̂)D̂(t) ˙̃X(t)+ ˙̂D(t)G0(t)

+
p

∑
i=1

˙̂θi(t)Gi(t)+
D̂

D
H(t)

)

(82)

with

G0(t) =K(θ̂ )

[

A(θ̂ )eA(θ̂)D̂(t)X̃(t)+

∫ 1

0
(I + A(θ̂)D̂(t)

×(1− y))eA(θ̂)D̂(t)(1−y)B(θ̂ )e(y,t)dy
]

(83)

Gi(t) =
∂K

∂ θ̂
(θ̂ )

[

eA(θ̂)D̂(t)X̃(t)+ D̂(t)

∫ 1

0
eA(θ̂)D̂(t)(1−y)

×B(θ̂)e(y,t)dy
]

+ K(θ̂)
[

AiD̂(t)eA(θ̂)D̂(t)X̃(t)

+D̂(t)

∫ 1

0

[

AiD̂(t)(1− y)eA(θ̂)D̂(t)(1−y)B(θ̂ )

+eA(θ̂)D̂(t)Bi

]

e(y,t)dy
]

(84)

H(t) =K(θ̂ )
[

B(θ̂ )Ũ(t)− eA(θ̂)D̂(t)B(θ̂ )e(0,t)

+

∫ 1

0
A(θ̂ )D̂(t)eA(θ̂)D̂(t)(1−y)B(θ̂)e(y,t)dy

]

. (85)

The signals ˙̂D, ˙̂θ1, . . . ,
˙̂θp are uniformly bounded over t ≥ 0,

according to (31)–(32). By using the uniform boundedness

of X̃(t), ˙̃X(t),‖e(t)‖,Ũ(t) over t ≥ 0 and of e(0,t) for t ≥ D

and the uniform boundedness of all the signals which are
functions of θ̂ for t ≥ 0, we obtain the uniform boundedness
of dŨ(t)2/dt over t ≥ D. Then, with Barbalat’s lemma, we
conclude that Ũ(t) → 0 when t → ∞.
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