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Abstract: This paper addresses the design of a robust prediction-based controller for linear systems
with both input and state delays. We extend the usual prediction-based scheme to state delay and
prove its robustness to sufficiently small delay mismatches. Our approach is grounded on the linking
of two recently proposed infinite-dimensional techniques: a Complete-Type Lyapunov functional, which
enables state delay systems stability analysis, and tools from the field of Partial Differential Equations,
reformulating the delays as transport equations and introducing a tailored backstepping transformation.
We illustrate the merits of the proposed technique with simulations on a process dryer system.

1. INTRODUCTION

Predictor-based control strategies, more commonly known as
Smith Predictor (see Smith [1959], Artstein [1982], Manitius
and Olbrot [1979]) are state-of-the-art for systems with con-
stant input time-delays (see for instance Gu and Niculescu
[2003], Jankovic [2008], Michiels and Niculescu [2007], Bresch-
Pietri et al. [2012], Bekiaris-Liberis and Krstic [2013] or
Richard [2003] and the reference therein). This technique is
grounded on the use of a prediction of the system state on a
time horizon equal to the input delay and aims at compensating
this delay, which notably improves the transient performances.

Another class of delay systems which are commonly employed,
e.g., to model population dynamics (see Erneux [2009], Ruan
[2006]) or process systems with recycle loops (see Meyer et al.
[1978], Chauvin et al. [2007], Bresch-Pietri et al. [2013]), are
dynamics involving an additional state delay. However, while
the literature on control of either input delay or state delay
systems is extremely wealth, systems with both input and state
delays have seldom been studied.

In this paper, we focus on the design of prediction-based con-
troller for linear systems with both input and state delay. Unlike
the predictor feedback for a problem with input delay only, in
this problem, the prediction employs an infinite dimensional
semi-group in the distributed part of the feedback. This semi-
group cannot anymore be written explicitly. To counteract this
difficulty, we extend recent result for stability analysis of state
delay systems (see Kharitonov [2013b]) to propose a corre-
sponding Lyapunov analysis and study the robustness of the
controller to delay mismatch.

Our approach is grounded on new tools that were pro-
posed lately to address input delay uncertainties (see Krstic
[2008a], Krstic [2008b]). This methodology is based on a mod-
eling of the actuator delay as a transport Partial Differential
Equation (PDE) coupled with the original Ordinary Differential
Equation (ODE) and on a corresponding suitable backstepping
transformation. We extend this framework for state delays, by

introducing an additional transport PDE accounting for the state
delay and proposing a new backstepping transformation. This is
the main contribution of the paper.

For the sake of clarity, we consider constant delay estimates and
only investigate the robustness of a prediction-based controller
to delays mismatches. Further, we address the two robustness
problems separately, by considering first state delay uncertain-
ties and then input delay uncertainties respectively. However,
from the presented elements, a careful reader can deduce that
existing delay-adaptive techniques involving time-varying esti-
mates (see Bresch-Pietri and Krstic [2010], Bresch-Pietri et al.
[2012], Bresch-Pietri [2012]) for both delays in the same time
can be straightforwardly applied within this new framework.
The objective of this paper is to present these new tools.

The paper is organized as follows. In Section 2, we introduce
the problem under consideration and some properties of interest
in the sequel. We present the design methodology that we pro-
pose to employ in Section 3 and apply it to address robustness
to state delay in Section 4 and to input delay in Section 5.
Finally, we illustrate the merits of our results in Section 6 with
simulations of a dryer process involving a recycle loop.

Notations In the following, n and p are strictly positive inte-
gers, |.| refers to the usual Euclidean norm whereas the norm
‖.‖ is the spatial L2-norm defined as

‖ f (t)‖=
√∫ 1

0
| f (x, t)|2dx , f : [0;1]×R+→ Rp

For D1 ≥ 0, we write Xt : s ∈ [−D1,0] 7→ X(t + s) ∈ Rn the
restriction of the state X on the interval [t−D1, t] and, for D≥ 0,
we write Ut : s ∈ [−D,0] 7→U(t + s) ∈ R the input restriction
on the interval [t −D, t]. We write ∂x f the partial derivative
of a function f with respect to a variable x. We write λm(M)
the minimal eigenvalue of a given matrix M ∈Mn. Finally, we
denote Cpw(S1,S2) the set of piecewise continuous functions
defined on the set S1 and taking values in S2.



2. PROBLEM STATEMENT AND PRELIMINARIES

2.1 Control objective

Consider the potentially unstable system
Ẋ(t) =A0X(t)+A1X(t−D1)+BU(t−D) (1)

in which X ∈ Rn, U is scalar and D ≥ D1 > 0. We consider
that the state delay D1 ∈ [D1,D1] (D1 > 0) and the input delay
D ∈ [D,D] (D > 0) are uncertain. The control objective is to
stabilize the plant through a prediction-based methodology,
despite delay uncertainties. With this aim in view, we first
formulate the following assumption.
Assumption 1. There exists (K0,K1) ∈ (R1,n)

2 such that the
system

Ẋ(t) =(A0 +BK0)X(t)+(A1 +BK1)X(t−D1) (2)
is exponentially stable.

This assumption states that, for a given state delay D1, there
exist gains such that a delayed plant in which the input delay
is compensated but not the state delay is exponentially stable.
Determination of such feedback gains is beyond the scope of
this paper, but may reveal to be a challenging task involving
Linear Matrix Inequalities (LMIs) resolution (see Gu et al.
[2003]). Depending on the algebraic structure of the plant,
it may even be possible to compensate the state delay, i.e.
to choose K1 such that A1 +BK1 = 0 (see the strict-feedback
system studied in Bekiaris-Liberis and Krstic [2010] and the
scalar example provided in Section 6).

Intuitively, extending straightforwardly the usual prediction-
based methodology (see Artstein [1982], Manitius and Olbrot
[1979]) to the case of the dynamics (1) yields the control
choice U(t) = K0X(t +D)+K1X(t +D−D1). However, deter-
mination of expressions of these predictions involves to inte-
grate the dynamics (1), which cannot be done explicitly. This is
the point that we now address.

2.2 Preliminaries: properties and nominal design

In this section, we present some elements of interest for the
sequel of the paper.
Proposition 1. (Bellman and Cooke [1963]). Consider Φ(·,D1)
the transition matrix of system (1), which satisfies the differen-
tial equation{

∂tΦ(t,D1) =A0Φ(t,D1)+A1Φ(t−D1,D1) , t ≥ 0
Φ(0,D1) =I , Φ(s,D1) = 0 for s ∈ [−D1,0[

(3)

and, besides, the following one{
∂tΦ(t,D1) =Φ(t,D1)A0 +Φ(t−D1,D1)A1 , t ≥ 0

Φ(0,D1) =I , Φ(s,D1) = 0 for s ∈ [−D1,0[
(4)

Then, given an initial time t0 and initial conditions
Xt0 ∈ Cpw([−D1,0],Rn) and Ut0 ∈ Cpw([−D,0],R), the corre-
sponding solution of system (1) writes, for t1 ≥ t0,

X(t1) =Φ(t1− t0,D1)X(t0)+
∫ t1−D

t0−D
Φ(t1−D− s,D1)BU(s)ds

+
∫ t0

t0−D1

Φ(t1− s−D1,D1)A1X(s)ds (5)

In particular, this result enables one to compute the system state
predictions X(t +D) and X(t +D−D1) in terms of past values
of the system state Xt and of the input Ut . This gives rise to the
following result.

Proposition 2. (Kharitonov [2013a]). Given initial conditions
X0 ∈ Cpw([−D1,0],Rn) and U0 ∈ Cpw([−D,0],R), then the
closed-loop system consisting of the plant (1) with D1 ≤D and
the control law

U(t) = K0X(t +D)+K1X(t +D−D1) (6)
=
[
K0Φ(D,D1)+K1Φ(D−D1,D1)

]
X(t)

+
∫ t

t−D1

[
K0Φ(t +D−D1− s,D1)

+K1Φ(t +D−2D1− s,D1)
]
A1X(s)ds

+
∫ t

t−D
K0Φ(t− s,D1)BU(s)ds

+
∫ t−D1

t−D
K1Φ(t−D1− s,D1)BU(s)ds (7)

is exponentially stable, in the sense that there exists γ,µ > 0
such that, for t ≥ 0,

|X(t)|+ |U(t)| ≤ µ

(
max

s∈[−D1,0]
|X0(s)|+ max

s∈[−D,0]
|U(s)|

)
e−γt

Intuitively, one can understand this result observing that, plug-
ging the control law (6), for t ≥ D into (1), the resulting closed
loop system should be (2) which is exponentially stable ac-
cording to Assumption 1. Determination of the explicit control
law (7) follows directly from (5) with (t1, t0) = (t +D, t) and
(t1, t0) = (t+D−D1, t) respectively 1 2 . However, proving sta-
bility without exponential estimates for the entire system state
(meaning in terms of Xt and Ut and for all t ≥ 0) is not an easy
task and was only provided recently in Kharitonov [2013a].

As a final ingredient to be used in the sequel, we reformulate (1)
with transport PDEs as

Ẋ(t) = A0X(t)+A1ζ (0, t)+Bu(0, t){
D1∂tζ (x, t) =∂xζ (x, t)

ζ (1, t) =X(t)

{
D∂tu(x, t) =∂xu(x, t)

u(1, t) =U(t)
(8)

in which we have introduced the distributed system state
ζ (x, t) = X(t + D1(x − 1)) and the distributed input
u(x, t) =U(t +D(x−1)), x ∈ [0,1] and t ≥ 0. In details, with
this new representation, the system consists of an ODE driven
by the outputs of two transports PDE, one fed by the current
system state X(t) propagated with speed 1/D1 and the other fed
by the current control U(t) propagated with speed 1/D. These
two transport equations account respectively for the state and
input delays.

We are now ready to focus on the control design in case of
delays uncertainties. For the sake of clarity of exposition, we
deal with these difficulties separately in the sequel.

1 Note that the control law (6) would also hold in the case D≤ D1, but that in
this case X(t +D−D1) is a past value of the system state and not a prediction,
as t + D−D1 ≤ t. Consequently, the controller equation (7) does not hold
as Φ(s,D1) = 0 for s ∈ [−D1,0) and neither does the analysis provided in
the sequel. However, this case directly falls into the context of input-delay
compensation and can be addressed with the tools previously proposed in Krstic
[2008a].
2 Note also that this control law, defined through an integral equation, is
well-defined. Indeed, it can be re-written as U(t) = f (t)+

∫ t
−D K(t,s)U(s)ds

which is a second-order Volterra equation, with K(t,s) = 0 for s < t−D
and K(t,s) = [K0Φ(t− s,D1)+K1Φ(t−D1− s,D1)]B otherwise. Follow-
ing Polyanin and Manzhirov [2007], the solution of this equation exists and
is unique.



3. PROPOSED METHODOLOGY

To account for delay uncertainties, we propose to introduce
distributed estimates corresponding to the transport variables
introduced in (8), with estimated speed of propagation fed by
the delay estimates. These distributed estimates are suitably
scaled to enable comparison between their propagation speed.

To analyze the effect of these errors on the closed-loop stability,
we transform these variables via the backstepping technique
(see Krstic [2008a], Krstic and Smyshlyaev [2008]). This en-
ables to reformulate the plant in the form of a stable ODE, fed
by transport equations with source terms with vanishing bound-
ary conditions. This equivalent representation is then used to
provide sufficient conditions for stabilization via a Lyapunov
analysis.

Finally, we take advantage of the complete-type Lyapunov-
Krasovskii functional introduced in Kharitonov and Zhabko
[2003] to build Lyapunov functional candidates and develop a
stability analysis. This is the methodology applied in the sequel.

4. ROBUSTNESS TO STATE DELAY MISMATCH

In this section, we consider that the input delay D is per-
fectly known, while the state delay D1 ∈ [D1, D̄1] is uncer-
tain. Correspondingly, we consider a constant delay estimate
D̂1 ∈ [D1, D̄1].

4.1 Control design

Following the certainty equivalence principle applied to the
nominal controller (7), we choose the control law

U(t) = [K0Φ(D, D̂1)+K1Φ(D− D̂1, D̂1)]X(t)

+
∫ t

t−D̂1

[K0Φ(t +D− D̂1− s, D̂1)

+K1Φ(t +D−2D̂1− s, D̂1)]A1X(s)ds

+
∫ t

t−D
K0Φ(t− s, D̂1)BU(s)ds

+
∫ t−D̂1

t−D
K1Φ(t− D̂1− s, D̂1)BU(s)ds (9)

Theorem 1. Consider the closed-loop system consisting of the
plant (1) and the control law (9). Define the functional

Γ(t) =|X(t)|2 +
∫ t

t−max{D1,D̂1}−D̂1

|X(s)|2ds+
∫ t

t−D−D̂1

U(s)2ds

(10)

There exists δ ∗ > 0 such that, if |D1− D̂1| < δ ∗, there exists
R > 0 and ρ > 0 such that

Γ(t)≤ RΓ(0)e−ρt , t ≥ 0 (11)

This result states that exponential stabilization is preserved,
provided that the state delay estimation error is sufficiently
small. Even if an expression of δ ∗ is proposed in the section
below, we do not aim here at providing a quantitative bound for
this critical error but only at presenting a proof for a seemingly
intuitive result.

4.2 Proof of Theorem 1

Before detailing the Lyapunov stability analysis for the closed-
loop system, we introduce several intermediate variables which
are used to reformulate the plant in a more suitable form.

Distributed estimates To take into account the effects of the
state delay estimation, we introduce the following distributed
state estimate with the corresponding distributed state error

ζ̂ (x, t) = X(t + D̂1(x−1)) (12)

ζ̃ (x, t) = ζ (x, t)− ζ̂ (x, t) (13)

Lemma 1. Define D̃1 = D1− D̂1. The distributed states defined
in (12)–(13) satisfy the dynamics{

D̂1∂t ζ̂ =∂xζ̂

ζ̂ (1, t) =X(t)

D1∂t ζ̃ =∂xζ̃ − D̃1

D̂1
∂xζ̂

ζ̃ (1, t) =0
(14)

Proof: Taking a time- and spatial-derivative of the distributed
state estimate (12), one obtains that it satisfies D̂1∂t ζ̂ = ∂xζ̂ .
Consequently, using (8), it follows that

D1∂t ζ̃ =∂xζ − D1

D̂1
∂xζ̂ = ∂xζ̃ − D̃1

D̂1
∂xζ̂

and the boundary condition can be obtained noticing that
ζ (1, t) = ζ̂ (1, t) = X(t).
Lemma 2. Define the distributed variables

ẑ(x, t) =Φ((D− D̂1)x, D̂1)X(t)

+ D̂1

∫ 1

0
Φ((D− D̂1)x− D̂1y, D̂1)A1ζ̂ (y, t)dy

+D
∫ D−D̂1

D x

0
Φ((D− D̂1)x−Dy, D̂1)Bu(y, t)dy (15)

v̂(x, t) =

 ζ̂

(
D
D̂1

x, t
)

for x ∈ [0, D̂1/D)

ẑ
(

Dx−D̂1
D−D̂1

, t
)

for x ∈ [D̂1/D,1]
(16)

The following dynamics is satisfied, for x ∈ [0,1] and t ≥ 0,{
D∂t v̂ =∂xv̂+DΦ(Dx− D̂1, D̂1)A1ζ̃ (0, t)

v̂(0, t) =ζ̂ (0, t)
(17)

In this lemma, we introduce a prediction z(x, t) of the system
state at time t + x(D− D̂1), starting from the current system
state X(t). Concatenating z with the previous distributed state
ζ , we aim at estimating the system state over the whole time
interval [t− D̂1, t +D− D̂1].

Proof: We first highlight the fact that the transport equation
is indeed a transport equation in the case of perfect delay
knowledge as v̂(D̂1/D) = ζ̂ (1, t) = ẑ(0, t) = X(t). Now, taking
spatial- and time-derivative of (15) and using the dynamics and
initial condition of the transition matrix Φ, one gets
∂t ẑ = Φ((D− D̂1)x, D̂1) [A0X(t)+A1X(t−D1)+BU(t−D)]

+ D̂1

∫ 1

0
Φ((D− D̂1)x− D̂1y, D̂1)A1∂t ζ̂ (y, t)dy

+D
∫ D−D̂1

D x

0
Φ((D− D̂1)x−Dy, D̂1)B∂tu(y, t)dy

∂xẑ = (D− D̂1)

[
Φ((D− D̂1)x, D̂1)A0X(t)

+
∫ 1

0
Φ((D− D̂1)x− D̂1y, D̂1)A1∂xζ̂ (y, t)dy

+Φ((D− D̂1)x, D̂1)A1ζ̂ (0, t)+Φ((D− D̂1)x, D̂1)Bu(0, t)

+
∫ D−D̂1

D x

0
Φ((D− D̂1)x−Dy, D̂1)B∂xu(y, t)dy

]



in which we have used integrations by parts. Using the transport
PDEs in (8)–(14) and the facts that ζ̂ (0, t) = X(t−D1)− ζ̃ (0, t)
and that u(0, t) =U(t−D), one obtains that, for x ∈ [0,1],

(D− D̂1)∂t ẑ = ∂xẑ+(D− D̂1)Φ((D− D̂1)x, D̂1)A1ζ̃ (0, t)

Then, consider x ∈ [D̂1/D,1]. From (16), it follows that

∂t v̂(x, t) =∂t ẑ
(

Dx− D̂1

D− D̂1
, t
)
,∂xv̂(x, t) = D

D−D̂1
∂xẑ
(

Dx− D̂1

D− D̂1
, t
)

Plugging the two previous equations, one obtains (17). Further,
consider x ∈ [0, D̂1/D). We have

∂t v̂(x, t) =∂t ζ̂

(
D
D̂1

x, t
)
, ∂xv̂(x, t) =

D
D̂1

∂xζ̂

(
D
D̂1

x, t
)

Using the dynamics of ζ̂ given in Lemma 1, one obtains
D∂t v̂ = ∂xv̂ which is indeed (17) as Φ(Dx− D̂1, D̂1) = 0 for
x ∈ [0, D̂1,D). Finally, from (16), v̂(0, t) = ζ̂ (0, t).

This lemma simply states that the normalized result of two
consecutive transport equations is a transport equation with
concatenated source terms and the speed of which is the sum
of the original two. In other words, plugging together ζ̂ and ẑ
with respective speeds of propagation D̂1 and D− D̂1 and with
similar boundary condition ζ̂ (1, t) = X(t) = v̂(0, t), one obtains
one unique transport equation with speed of propagation D.

Backstepping transformation and target system Consider the
backstepping transformation of the distributed actuator u

ŵ(x, t) =u(x, t)−K1v̂(x, t)−K0Φ(Dx, D̂1)X(t)

−K0D̂1

∫ 1

0
Φ(Dx− D̂1y, D̂1)A1ζ̂ (y, t)dy

−K0D
∫ x

0
Φ(D(x− y), D̂1)Bu(y, t)dy (18)

in which the distributed variable v̂ is introduced in (16). This
backstepping transformation is defined in order to fulfill the
boundary condition ŵ(1, t) = 0, which is consistent with (9).
This particular property enables then to introduce negative
bounding terms in the Lyapunov analysis which are used to
prove stability in the following section.
Lemma 3. The backstepping transformation (18) together with
the control law (9) transform the plant (8) into

Ẋ(t) = (A0 +BK0)X(t)

+(A1 +BK1)ζ (0, t)+B[ŵ(0, t)−K1ζ̃ (0, t)]{
D1∂tζ =∂xζ

ζ (1, t) =X(t){
D1∂t ζ̃ =∂xζ̃ − D̃1h(x, t)

ζ̃ (1, t) =0

{
D∂t ŵ =∂xŵ−g(x)ζ̃ (0, t)

ŵ(1, t) =0

in which g(x) = D[K0Φ(Dx, D̂1) +K1Φ(Dx− D̂1, D̂1)]A1 and

h(x, t) = ∂xζ̂

D̂1
. Further, the spatial-derivative of the distributed

state estimate (12) satisfies the following dynamics
D̂1∂xt ζ̂ =∂xxζ̂

∂xζ̂ (1, t) =D̂1
(
(A0 +BK0)X(t)+(A1 +BK1)ζ (0, t)

+B[ŵ(0, t)−K1ζ̃ (0, t)]
)

Proof: First, using (18), the initial condition of Φ(·, D̂1)
and (17), one obtains that

u(0, t) =ŵ(0, t)+K1ζ̂ (0, t)+K0X(t)

=ŵ(0, t)−K1ζ̃ (0, t)+K1ζ (0, t)+K0X(t)
and therefore the first ODE follows. Using Lemma 1, the only
transport PDEs that remain to study are the one governing the
backstepping transformation ŵ and the spatial-derivative of the
distributed state estimate ∂xζ̂ . With this aim in view, define the
intermediate variable

v0(x, t) =Φ(Dx, D̂1)X(t)+ D̂1

∫ 1

0
Φ(Dx− D̂1y, D̂1)A1ζ̂ (y, t)dy

+D
∫ x

0
Φ(D(x− y), D̂1)Bu(y, t)dy

in terms of which the backstepping transformation can be ex-
pressed as ŵ(x, t) = u(x, t)−K1v̂(x, t)−K0v0(x, t). Following
lines similar to those previously used for Lemma 2, one obtains

D∂tv0 =∂xv0 +DΦ(Dx, D̂1)A1ζ̃ (0, t) v0(0, t) = X(t)

Using (8) and (17), it follows that D∂t ŵ = ∂xŵ−g(x)ζ̃ (0, t)
which gives the desired result. The boundary condition
ŵ(1, t) = 0 can be obtained from (9) with changes of variable.

Finally, the dynamics of ∂xζ̂ can be obtained by taking a spatial-
derivative of the dynamics of ζ̂ which is given in the proof of
Lemma 1. The boundary condition can also be obtained from
this dynamics for x = 1, as, following (12), ∂xζ̂ (1, t) = D̂1Ẋ(t)
which is given by the first ODE in the statement of Lemma 3.

Lyapunov analysis We now rely on the elements gathered in
Appendix to define the following Lyapunov-Krasovskii func-
tional candidate

V (t) =W (t)+b0D1

∫ 1

0
(1+ x)|ζ̃ (x, t)|2dx (19)

+b1D
∫ 1

0
(1+ x)ŵ(x, t)2dx+b2D̂1

∫ 1

0
(1+ x)|∂xζ̂ (x, t)|2dx

in which the functional W is given in (A.1). Taking a time-
derivative of (19) and using Lemma 7 given in Appendix with
ε(t) = B[ŵ(0, t)−K1ζ̃ (0, t)], one obtains

V̇ (t) =−X(t)TW0X(t)−ζ (0, t)TW1ζ (0, t)

−D1

∫ 1

0
ζ (x, t)TW2ζ (x, t)dx+2XT Q(0)B[ŵ(0, t)−K1ζ̃ (0, t)]

+2D1(ŵ(0, t)−K1ζ̃ (0, t))BT
∫ 1

0
Q(−D1x)(A1 +BK1)ζ (x, t)dx

−b0|ζ̃ (0, t)|2−b0

∥∥∥ζ̃ (t)
∥∥∥2
−2b0D̃1

∫ 1

0
(1+ x)ζ̃ (x, t)T h(x, t)dx

−b1ŵ(0, t)2−b1 ‖ŵ(t)‖2−2b1

∫ 1

0
(1+ x)ŵ(x, t)g(x)ζ̃ (0, t)dx

+b2(2|∂xζ̂ (1, t)|2−|∂xζ̂ (0, t)|2−
∥∥∥∂xζ̂ (t)

∥∥∥2
)

in which we have used the dynamics given in Lemma 3, suitable
integrations by parts and finally changes of variable to express
some integrals in terms of ζ . From the expressions of g,h and
∂xζ̂ (1, t) given in Lemma 3, one obtains, applying Cauchy-
Schwartz’s and Young’s inequalities, the existence of a constant
M > 0 such that∣∣∣∣2D̃1

∫ 1

0
(1+ x)ζ̃ (x, t)T h(x, t)dx

∣∣∣∣≤MD̃2
1

∥∥∥∂xζ̂ (t)
∥∥∥2

+

∥∥∥ζ̃ (t)
∥∥∥2

2∣∣∣∣2∫ 1

0
(1+ x)ŵ(x, t)g(x)ζ̃ (0, t)dx

∣∣∣∣≤M|ζ̃ (0, t)|2 +‖ŵ(t)‖2 /2

2|∂xζ̂ (1, t)|2 ≤M(|X(t)|2 + |ζ (0, t)|2 + |ζ̃ (0, t)|2 + ŵ(0, t)2)



Therefore, applying Young’s inequality and defining

M0 =
4|Q(0)B|2

λm(W0)
+

4D1

λm(W2)

∣∣∣∣BT max
x∈[0,1]

Q(−D1x)(A1 +BK1)

∣∣∣∣2
it follows

V̇ (t)≤−
(

λm(W0)

2
−b2M

)
|X(t)|2− λm(W2)D1

2
‖ζ (t)‖2

− (λm(W1)−b2M) |ζ (0, t)|2−b2

∥∥∥∂xζ̂ (t)
∥∥∥− b0

2

∥∥∥ζ̃ (t)
∥∥∥2

−
(

b0−M0|K1|2− (b1 +b2)M
)
|ζ̃ (0, t)|2− b1

2
‖ŵ(t)‖2

−
(

b1−M0−b2M
)

ŵ(0, t)2 +b0D̃2
1M
∥∥∥∂xζ̂ (t)

∥∥∥2

Consequently, choosing 0 < b2 < min
{

λm(W0)
2M , λm(W1)

M

}
,

b1 > M0 +b2M, b0 > M0|K1|2 +(b1 +b2)M, and defining
η = min

{
λm(W0)

2 −b2M, λm(W2)D1
2 ,b2,

b0
2 ,

b1
2

}
, one gets

V̇ (t)≤−
(
η−b0D̃2

1M
)
(|X(t)|2 +‖ζ (t)‖2 +

∥∥∥ζ̃ (t)
∥∥∥2

+
∥∥∥∂xζ̂ (t)

∥∥∥2
+‖ŵ(t)‖2)

Therefore, if |D̃1| <
√

η

b0M = δ ∗, using (A.3), there exists

η0 > 0 such that V̇ (t) ≤ −η0V (t) and consequently
V (t)≤V (0)e−η0t for t ≥ 0. Now it remains to relate Γ and V to
formulate a similar property for Γ.

Equivalence between the two functionals Γ and V Consid-
ering the transformation (18) and its inverse (the expression
of which is not given here due to space limitation but can be
obtained similarly to the one given in the proof of Lemma 8 in
Appendix), one can obtain the existence of positive constants
r1,r2,r3,s1,s2 and s3 such that

‖u(t)‖2 ≤r1|X(t)|2 + r2

∥∥∥ζ̂ (t)
∥∥∥2

+ r3 ‖ŵ(t)‖2

‖ŵ(t)‖2 ≤s1|X(t)|2 + s2

∥∥∥ζ̂ (t)
∥∥∥2

+ s3 ‖u(t)‖2

Using these two inequalities together with (A.3), one can ob-
tain, with straightforward inequalities and changes of variable,
the existence of β1,β2 > 0 such that

β1Γ(t)≤V (t)≤ β2Γ(t)
Consequently, it follows that

Γ(t)≤ V (t)
β1
≤ V (0)

β1
e−η0t ≤ β2

β1
Γ(0)e−η0t , t ≥ 0

This concludes the proof of Theorem 1.

5. ROBUSTNESS TO INPUT DELAY MISMATCH

In this section, we now consider that D ∈ [D, D̄] is uncertain,
while the state delay D1 is perfectly known. Correspondingly,
we define a constant delay estimate D̂ and follow steps similar
to those used in the previous section.

5.1 Control design

Following the certainty equivalence principle applied to the
nominal controller (7), we choose the control law

U(t) =[K0Φ(D̂,D1)+K1Φ(D̂−D1,D1)]X(t)

+
∫ t

t−D1

[K0Φ(t + D̂−D1− s,D1)

+K1Φ(t + D̂−2D1− s,D1)]A1X(s)ds

+
∫ t

t−D̂
K0Φ(t− s,D1)BU(s)ds

+
∫ t−D1

t−D̂
K1Φ(t−D1− s,D1)BU(s)ds (20)

Theorem 2. Consider the closed-loop system consisting of the
plant (1) and the control law (20). Define the functional

Γ(t) =|X(t)|2 +
∫ t

t−2D1

|X(s)|2ds

+
∫ t

t−max{D,D̂}−D1

U(s)2ds+
∫ t

t−D̂
U̇(s)2ds

There exists δ ∗ > 0 such that, if |D̃| < δ ∗, there exists R > 0
and ρ > 0 such that

Γ(t)≤ RΓ(0)e−ρt , t ≥ 0 (21)

Note that the functional Γ introduced in Theorem 2 is different
from the one given in Theorem 1 in the sense that it also
involves the L2-norm of the control map. This is due to the
fact that the source terms appearing in the dynamics involves a
derivative of the input because of the input history estimation.

5.2 Proof of Theorem 2

Distributed estimates We introduce the following distributed
input estimate with the corresponding distributed input error

û(x, t) =U(t + D̂(x−1)) (22)
ũ(x, t) = u(x, t)− û(x, t) (23)

Lemma 4. Consider the distributed variables defined in (22)–
(23). The plant (8) can then be reformulated as

Ẋ(t) = A0X +A1ζ (0, t)+B[ũ(0, t)+ û(0, t)]

{
D1∂tζ =∂xζ

ζ (1, t) =X(t)

{
D∂t ũ =∂xũ− D̃h0(x, t)

ũ(1, t) =0{
D̂∂t û =∂xû

û(1, t) =U(t)

(24)

in which D̃ = D− D̂ and h0(x, t) = ∂xû(x, t)/D̂.

Proof: From (23), it follows that u(0, t) = ũ(0, t) + û(0, t)
which gives the plant ODE. Second, taking spatial- and time-
derivatives of (22), one obtains that D̂∂t û = ∂xû. Therefore,
using the equation governing u in (8), one gets

D∂t ũ =∂xu− D
D̂

∂xû = ∂xũ− D̃
D̂

∂xû

Using finally that û(1, t) = u(1, t) =U(t), the boundary condi-
tion ũ(1, t) = 0 follows.
Lemma 5. Define the distributed variables

ẑ(x, t) =Φ((D̂−D1)x,D1)X(t)

+D1

∫ 1

0
Φ((D̂−D1)x−D1y,D1)A1ζ (y, t)dy

+ D̂
∫ D̂−D1

D̂
x

0
Φ((D̂−D1)x− D̂y,D1)Bû(y, t)dy (25)

v̂(x, t) =

 ζ

(
D̂
D1

x, t
)

for x ∈ [0,D1/D̂)

ẑ
(

D̂x−D1
D̂−D1

, t
)

for x ∈ [D1/D̂,1]
(26)

The the following dynamics is satisfied, for x ∈ [0,1] and t ≥ 0,{
D̂∂t v̂ =∂xv̂+ D̂Φ(D̂x−D1,D1)Bũ(0, t)

v̂(0, t) =ζ (0, t)
(27)



Proof: The proof follows steps similar to those used for
Lemma 2. First, one can observe that (27) makes sense
because v̂(D1/D̂) = ζ (1, t) = ẑ(0, t) = X(t). Now, taking
spatial- and time-derivatives of (25), as previously, one can get
(D̂−D1)∂t ẑ = ∂xẑ+(D̂−D1)Φ((D̂−D1)x,D1)Bũ(0, t) with
ẑ(0, t) = X(t). Taking spatial and time-derivatives of (16) for
x ∈ [D1/D̂,1] and x ∈ [0,D1/D̂) respectively, using this last
dynamics and the one of ζ given in Lemma 4, one concludes.

5.3 Backstepping transformation and target system

We now define the following backstepping transformation
ŵ(x, t) =û(x, t)−K1v̂(x, t)−K0Φ(D̂x,D1)X(t)

−K0D1

∫ 1

0
Φ(D̂x−D1y,D1)A1ζ (y, t)dy

−K0D̂
∫ x

0
Φ(D̂(x− y),D1)Bû(y, t)dy (28)

Lemma 6. The backstepping transformation (28) together with
the control law (20) transform the plant (8) into

Ẋ(t) = (A0 +BK0)X(t)+(A1 +BK1)ζ (0, t)
+B[ũ(0, t)+ ŵ(0, t)]

{
D1ζt =ζx

ζ (1, t) =X(t)

{
D∂t ũ =∂xũ− D̃h0(x, t)

ũ(1, t) =0{
D̂∂t ŵ =∂xŵ−g0(x)ũ(0, t)

ŵ(1, t) =0

in which g0(x) = D̂[K0Φ(D̂x,D1) +K1Φ(D̂x−D1,D1)]B and
h0(x, t) = ∂xû

D̂
which can be reformulated using Lemma 8 in

Appendix. Further, the spatial-derivatives of the backstepping
transformation and of the distributed state satisfy the following
dynamics{

D̂∂xt ŵ =∂xxŵ−∂xg0(x)ũ(0, t)
∂xŵ(1, t) =g0(1)ũ(0, t)

D1∂xtζ =∂xxζ

∂xζ (1, t) =D1((A0 +BK0)X(t)+(A1 +BK1)ζ (0, t)
+B[ũ(0, t)+ ŵ(0, t)])

Proof: Define the intermediate variable

v0(x, t) =Φ(D̂x,D1)X(t)+D1

∫ 1

0
Φ(D̂x−D1y,D1)A1ζ (y, t)dy

+ D̂
∫ x

0
Φ(D̂(x− y),D1)Bû(y, t)dy

in terms of which the backstepping transformation can be ex-
pressed as ŵ(x, t) = û(x, t)−K1v̂(x, t)−K0v0(x, t). Following
lines similar to those previously used in Lemma 2, one obtains
that D̂∂tv0 = ∂xv0 + D̂Φ(D̂x,D1)Bũ(0, t) with v0(0, t) = X(t).
Therefore, using Lemma (5) and the dynamics governing û
in (24), one gets that D̂∂t ŵ = ∂xŵ−g0(x)ũ(0, t). The boundary
condition ŵ(1, t) = 0 can be obtained from (20) with suitable
changes of variable.

Finally, the dynamics of ∂xŵ and ∂xζ can be obtained by taking
a spatial-derivative of the dynamics of ŵ and of ζ respectively.
The boundary conditions follows also from these dynamics
noticing that ∂t ŵ(1, t) = 0 as ŵ(1, t) = 0 for all time.

Lyapunov analysis We now consider the following Lyapunov-
Krasovskii functional candidate

V (t) =W (t)+b0D1

∫ 1

0
(1+ x)|∂xζ (x, t)|2dx

+b1D
∫ 1

0
(1+ x)ũ(x, t)2dx+b2D̂

∫ 1

0
(1+ x)ŵ(x, t)2dx

+b2D̂
∫ 1

0
(1+ x)(∂xŵ(x, t))2dx (29)

in which W is defined in (A.1) in Appendix. Taking a time-
derivative of (29), using the dynamics given in Lemma 6 and
Lemma (7) given in Appendix with
ε(t) = B[ŵ(0, t)+ ũ(0, t)], one obtains
V̇ (t) =−X(t)TW0X(t)−ζ (0, t)TW1ζ (0, t)

−D1

∫ 1

0
ζ (x, t)TW2ζ (x, t)dx+2XT Q(0)B[ŵ(0, t)+ ũ(0, t)]

+2D1(ŵ(0, t)+ ũ(0, t))BT
∫ 1

0
Q(−D1x)(A1 +BK1)ζ (x, t)dx

+b0(2|∂xζ (1, t)|2−|∂xζ (0, t)|2−‖∂xζ (t)‖2)−b1ũ(0, t)2

−b1 ‖ũ(t)‖2−2b1D̃
∫ 1

0
(1+ x)h0(x, t)ũ(x, t)dx−b2ŵ(0, t)2

−2b2

∫ 1

0
(1+ x)[ŵ(x, t)g0(x)+∂xŵ(x, t)∂xg0(x)]ũ(0, t)dx

−b2 ‖ŵ(t)‖2 +b2(2(∂xŵ(1, t))2− (∂xŵ(0, t))2−‖∂xŵ(t)‖2)

in which we have used suitable integrations by parts and finally
changes of variable to express some integrals in terms of ζ . Us-
ing the expressions of h and ∂xζ (1, t) provided in Lemma 6 and
Lemma 8 given in Appendix, one obtains, applying Cauchy-
Schwartz’s and Young’s inequalities, the existence of a constant
M > 0 such that∣∣∣∣2D̃

∫ 1

0
(1+ x)h0(x, t)ũ(x, t)dx

∣∣∣∣≤ ‖ũ(t)‖2

2
+MD̃2

×
(
‖∂xŵ(t)‖2 +‖∂xζ (t)‖2 + |X(t)|2 +‖ζ (t)‖2 +‖ŵ(t)‖2

)
2|∂xζ (1, t)|2 ≤M(|X(t)|2 + |ζ (0, t)|2 + ũ(0, t)2 + ŵ(0, t)2)∣∣∣∣2∫ 1

0
(1+ x)[ŵ(x, t)g0(x)+∂xŵ(x, t)∂xg0(x)]ũ(0, t)dx

∣∣∣∣
≤ ‖ŵ(t)‖2 /2+‖∂xŵ(t)‖2 /2+Mũ(0, t)2

2(∂xŵ(1, t))2 ≤Mũ(0, t)2

Therefore, applying Young’s inequality, it follows

V̇ (t)≤−
(

λm(W0)

2
−b0M

)
|X(t)|2− λm(W2)D1

2
‖ζ (t)‖2

−b0 ‖∂xζ (t)‖− b1

2
‖ũ(t)‖2− b2

2
‖ŵ(t)‖2− b2

2
‖∂xŵ(t)‖2

− (λm(W1)−b0M) |ζ (0, t)|+b1D̃2M
(
‖∂xŵ(t)‖2

+‖∂xζ (t)‖2 + |X(t)|2 +‖ζ (t)‖2 +‖ŵ(t)‖2 )
− (b1−M0− (b0 +2b2)M)ũ(0, t)2− (b2−M0−b0M)ŵ(0, t)2

in which M0 has already be defined in Section (4.2). Conse-
quently, choosing 0 < b0 < min

{
λm(W0)

2M , λm(W1)
M

}
,

b2 > M0 +b0M, b1 > M0 +(b0 +2b2)M and defining η = min{
λm(W0)

2 −b0M, λm(W2)D1
2 ,b0,

b1
2 ,

b2
2

}
, one gets

V̇ (t)≤−
(
η−b1D̃2M

)
(|X(t)|2 +‖ζ (t)‖2 +‖∂xζ (t)‖2

+‖ũ(t)‖2 +‖ŵ(t)‖2 +‖∂xŵ(t)‖2)

Therefore, if |D̃| <
√

η

b1M = δ ∗, using (A.3) and straightfor-
ward inequalities and change of variables, there exists η0 > 0
such that V̇ (t) ≤ −η0V (t) and therefore V (t) ≤ V (0)e−η0t for
t ≥ 0. It now remains to show the same result in terms of the
functional Γ.
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Fig. 1. Schematic view of the dryer system under consideration.
The double arrows represent the (measured) flow rates of
the system. The dryer treats a fresh feed to provide to a
reactor a water-free solution, with Reactant R concentra-
tion y. The system involves a recycle loop. Due to trans-
portation through the pipes, both input and state delays
occur.

Equivalence between the two functionals Γ and V Consider-
ing the transformation (28) and its inverse given in the proof of
Lemma 8 in Appendix, one can obtain the existence of positive
constants r1,r2,r3,s1,s2 and s3 such that

‖û(t)‖2 ≤r1|X(t)|2 + r2 ‖ζ (t)‖2 + r3 ‖ŵ(t)‖2

‖ŵ(t)‖2 ≤s1|X(t)|2 + s2 ‖ζ (t)‖2 + s3 ‖û(t)‖2

and similar ones for the spatial-derivatives ûx and ŵx. Using
these two inequalities together with (A.3), one can obtain,
with straightforward inequalities and changes of variable, the
existence of β1,β2 > 0 such that β1Γ(t) ≤ V (t) ≤ β2Γ(t) for
t ≥ 0 which gives (21).

6. SIMULATION EXAMPLE

In this section, to illustrate the merits of the obtained results,
we consider an example from the process industry, which can
be found in petrochemical plants 3 . This drying process aims
at eliminating the water from a fresh feed to be treated in
a polymerization reactor, in which an hydrophobic reaction
occurs. A second main objective of the process is to control
the concentration in one of the reactant R of the feed entering
the reactor. To fulfill this aim, an extra amount of reactant R can
be provided at the input of the dryer. This is the control variable
of the process.

The system under consideration is pictured in Fig. 1. To im-
prove the drying efficiency, a portion of the output defined by ε

is recycled. This recycle loop together with the pipes network
used to provide the desired amount of reactant R involve flow
transportation which result into two transport delays, one bear-
ing on the system state (D1) and the second one on the input
(D). Note that this intricate configuration is a consequence of
the network architecture, historic design choices and hardware
upgrades, which are now suffered. This explains the resulting
unwanted transport delays.

For the sake of simplicity of the exposure, we consider here
that the fresh feed concentration y0 and the various mass flow
rates are constant. The dryer dynamics can be approximated
by a first-order stable equation with unitary static gain 4 . We

3 We wish to thank A. Le Walle from Total for suggesting this study.
4 A more realistic model would be a delayed first order equation with a time-
varying gain. Even if we do not consider this delay here, for the sake of
clarity, the control design could be straightforwardly modified to account for
it. However, gain variations is a much more challenging topic which cannot
be handled by the current proposed methodology and would require additional
integral controller. This is a direction of future work.
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Fig. 2. Simulation results, starting from the equilibrium
(X0,U0) = (0.8,0.8 f ) and with three different controllers:
the proposed prediction-based control law (plain) with
gains (K0,K1) = (−2A0/B,−A1/B), a proportional one
(dashed) with gain K = −2A0/B and the open-loop
response (dashed dotted). The parameters values are
f = 1,τ = 1, ε = 0.5, y0 = 0.8, D1 = 0.7 and D = 0.9.

further assume that the transport delays are constant 5 and that,
due to the magnitude of the flow rate and pipes length, D1 < D.
Under these assumptions, the dryer inlet concentration is

e(t) =
f y0 + ε f y(t−D1)+ f1(t−D)

f (1+ ε)+ f1(t−D)

Therefore, using the fact that f1 << 1 due to the scale of
the concentrations and volumes at stake, the dynamics can be
approximated as

τ ẏ(t) =− y(t)+
f y0 + ε f y(t−D1)+ f1(t−D)

f (1+ ε)

which complies with (1), defining X = y, U = f y0 + f1,
A0 =− 1

τ
, A1 =

ε

τ(1+ε) and B = 1
τ f (1+ε) .

One can check that, for the considered parameters values, the
open-loop dynamics is exponentially stable. However, to im-
prove transient performances, we consider the set of feedback
gain R− ×{−A1/B}. This set satisfies Assumption 1, as (2)
would be Ẋ =−

( 1
τ
+ k
)

X(t) which is exponentially stable for
k ≥ 0. Finally, the control reference corresponding to a state
equilibrium X r is U r = f X r.

To implement the control laws (9) and (20), we solve (3) nu-
merically on the time interval [0,D] by inductive forward Euler
approximation of (3) on intervals of length D1 (starting with
Φt = A0Φ(t) for t ∈ [0,D1] using the initial condition of the
transition matrix). The integrals involved in the two controllers
equations (9) and (20) are computed using trapezoidal approx-
imations.

Fig. 2 pictures the simulation response obtained with the pro-
posed controller for k =−2/τ and with the true delays. For the
sake of comparison, the closed-loop response obtained with a
proportional controller employing the same feedback gain and
the open-loop response are also provided. One can observe that
the proposed controller achieves exponential convergence and
considerably increases the response time compared to the open-
loop response. This is not achieved by a simple proportional
controller which exhibits substantial oscillations. Decreasing
5 In practice, these delays vary with the flow rates according to an integral
equation.
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Fig. 3. Simulation results, starting from the equilibrium
(X0,U0) = (0.8,0.8(d(1 + ε) − ε)), with the proposed
prediction-based control law with gains (K0,K1) =
(−2A0,−A1) for three different sets of delays: the true
ones (plain), an overestimated state delay (dashed) and an
overestimated input delay (dashed dotted). The parameters
values are f = 1,τ = 1, ε = 0.5 y0 = 0.8, D1 = 0.7 and
D = 0.9.

the magnitude of the feedback gain would in all likelihood sup-
press these oscillations but would also worsen the time response
of the system. In any case, the time response obtained with the
proportional controller would be more important than the one
obtained with the proposed prediction-based controller. This is
the main advantage of the proposed technique.

Fig. 3 aims at illustrating Theorems 1 and 2. The closed-loop
response obtained employing respectively an erroneous state
delay D̂1 = D1 +0.2 and an erroneous input delay D̂ = D+0.2
are compared to the nominal response. One can observe that
transient performances are decreased compared to the nominal
case, due to delay estimation errors, but that convergence is still
achieved with an honorable response time. The effect of the
delay errors appear at approximately t ≈ 1.8 = 2D, i.e. roughly
after a time horizon corresponding to two input delays. This
is due to the fact that the effect of the errors perpetrated while
computing the transition matrix does not arise in the control law
before this time, as the first values of the transition matrix are
correct (similar initial conditions).

7. CONCLUSION

In this paper, we addressed prediction-based design for sys-
tems with both state and input delays and proved robustness
of the controller provided that delays mismatches are small
enough. Our approach is grounded on the linking of two re-
cently proposed infinite-dimensional techniques: a Complete-
Type Lyapunov functional, which enables state delay systems
stability analysis, and tools from the field of Partial Differential
Equations, reformulating the delays as transport equations and
introducing a tailored backstepping transformation. We claim
that these elements can be straightforwardly extended to design
delay-adaptive control. This is a direction of future work.

Appendix A. COMPLETE-TYPE
LYAPUNOV-KRASOVSKII FUNCTIONALS

Consider the following functional from Kharitonov [2013b]

W (t) =X(t)T Q(0)X(t)+
∫ t

t−D1

X(s1)(A1 +BK1)
T

×
∫ t

t−D1

Q(s1− s2)(A1 +BK1)X(s2)ds1ds2

+2X(t)T
∫ t

t−D1

Q(t−D1− s)(A1 +BK1)X(s)ds

+
∫ t

t−D1

X(s)T [W1 +(s− t +D1)W2]X(s)ds (A.1)

in which W0,W1 and W2 are given positive definite matrices and

Q(t) =
∫

∞

0
Φ̃(s)(W0 +W1 +D1W2)Φ̃(s+ t)ds

with Φ̃ the characteristic matrix of (2).
Proposition 3. The time-derivative of the functional (A.1)
along any trajectory of (2) satisfies

Ẇ (t) =−X(t)TW0X(t)−X(t−D1)
TW1X(t−D1)

−
∫ t

t−D1

X(s)TW2X(s)ds (A.2)

Further, there exist α1 > 0 and α2 > 0 such that

α1|X(t)|2 ≤W (t)≤ α2

(
|X(t)|2 +

∫ t

t−D1

|X(t)|2ds
)

(A.3)

Lemma 7. The time-derivative of the functional (A.1) along
any trajectory of the plant

Ẋ(t) =(A0 +BK0)X(t)+(A1 +BK1)X(t−D1)+ ε(t) (A.4)
satisfies

Ẇ (t) =−X(t)TW0X(t)−X(t−D1)
TW1X(t−D1)

−
∫ t

t−D1

X(s)TW2X(s)ds+2X(t)T Q(0)ε(t)

+2ε(t)T
∫ t

t−D1

Q(t−D1− s)(A1 +BK1)X(s)ds

Elements of proof: One can observe that only the first and the
third terms in (A.1) involve system state values that explicitly
depend on the time-parameter t. Therefore, while taking a
time-derivative of (A.1), the differential equation of X only
matters to obtain a time-derivative of the first and third terms.
Comparing (2) and (A.4). one obtains for the first term, for
example,

d
dt
[X(t)T Q(0)X(t)]|(A.4)

=
d
dt
[X(t)T Q(0)X(t)]|(2) +2ε(t)T Q(0)X(t)

The result follows, using Proposition 3.

Appendix B. INTERMEDIATE LEMMAS USED IN
SECTION 5.2

Lemma 8. Consider Φ̃ the transition matrix associated with (2),
which is denoted Φ̃(·,D1) = Φ̃(·) in the following for the
sake of conciseness. The spatial-derivative of the distributed
input (22) are, for x ∈ [0,D1/D̂] and x ∈ [D1/D̂,1], respectively
∂xû(x, t) = ∂xŵ(x, t)+K1D̂/D1×∂xζ

(
D̂/D1x, t

)
+K0D̂

[
(Φ̃(D̂x)(A0 +BK0)+ Φ̃(D̂x−D1)(A1 +BK1))X(t)

+D1

∫ 1

0
(Φ̃(D̂x−D1y)(A0 +BK0)+ Φ̃(D̂x−D1(1+ y))

× (A1 +BK1))A1ζ (y, t)dy+ D̂
∫ x

0
(Φ̃(D̂(x− y))(A0 +BK0)

+ Φ̃(D̂(x− y)−D1)(A1 +BK1))Bŵ(y, t)dy
]



∂xû(x, t) = ∂xŵ(x, t)

+K1

[
(Φ̃((D̂−D1)x)(A0 +BK0)+ Φ̃((D̂−D1)x−D1)

× (A1 +BK1))X(t)+D1

∫ 1

0
(Φ̃((D̂−D1)x−D1y)

× (A0 +BK0)+ Φ̃((D̂−D1)x−D1(1+ y))(A1 +BK1))

×A1ζ (y, t)dy+ D̂
∫ x

0
(Φ̃((D̂−D1)x− D̂y))(A0 +BK0)

× (A1 +BK1))B+ Φ̃((D̂−D1)x− D̂y−D1)ŵ(y, t)dy
]

+K0D̂
[
(Φ̃(D̂x)(A0 +BK0)+ Φ̃(D̂x−D1)(A1 +BK1))X(t)

+D1

∫ 1

0
(Φ̃(D̂x−D1y)(A0 +BK0)+ Φ̃(D̂x−D1(1+ y))

× (A1 +BK1))A1ζ (y, t)dy+ D̂
∫ x

0
(Φ̃(D̂(x− y))(A0 +BK0)

+ Φ̃(D̂(x− y)−D1)(A1 +BK1))Bŵ(y, t)dy
]

Proof: The backstepping transformation (28) has the following
inverse, for x ∈ [0,D1/D̂]

û(x, t) =ŵ(x, t)+K1ζ

(
D̂
D1

x, t
)
+K0

[
Φ̃(D̂x)X(t)

+D1

∫ 1

0
Φ̃(D̂x−D1y)A1ζ (y, t)dy

+ D̂
∫ x

0
Φ̃(D̂(x− y))Bŵ(y, t)dy

]
and, for x ∈ [D1/D̂,1],

û(x, t) =ŵ(x, t)+K1

[
Φ̃((D̂−D1)x)X(t)

+D1

∫ 1

0
Φ̃((D̂−D1)x−D1y)A1ζ (y, t)dy

+ D̂
∫ x

0
Φ̃((D̂−D1)x−D1y)Bŵ(y, t)dy

]
+K0

[
Φ̃(D̂x)X(t)+D1

∫ 1

0
Φ̃(D̂x−D1y)A1ζ (y, t)dy

+ D̂
∫ x

0
Φ̃(D̂(x− y))Bŵ(y, t)dy

]
Taking a spatial-derivative of these two expressions, one ob-
tains the Lemma statement.
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